Spaces:
Sleeping
Sleeping
File size: 7,971 Bytes
4a37dab 4e9b286 01a49c3 4e9b286 41d06ba 01a49c3 4e9b286 01a49c3 4e9b286 c4d6bf6 01a49c3 d531709 4e9b286 4a37dab c4d6bf6 4a37dab 4e9b286 5e3f570 4a37dab 01a49c3 4e9b286 01a49c3 4e9b286 891e37e c4d6bf6 4a37dab c4d6bf6 891e37e 2084afa 891e37e 4e9b286 891e37e c4d6bf6 01a49c3 891e37e 5f58cac 4e9b286 01a49c3 63b59c5 4e9b286 5f58cac 556b4ae 2084afa 01a49c3 4e9b286 01a49c3 4e9b286 01a49c3 4e9b286 556b4ae 4e9b286 556b4ae d531709 eb02780 d531709 4e9b286 d531709 c4d6bf6 4e9b286 c4d6bf6 4e9b286 c4d6bf6 4e9b286 d531709 4e9b286 2084afa 4e9b286 c4d6bf6 4e9b286 d531709 c4d6bf6 2084afa 63b59c5 4e9b286 01a49c3 eb02780 01a49c3 4e9b286 01a49c3 4e9b286 01a49c3 4e9b286 01a49c3 4e9b286 01a49c3 4e9b286 d531709 d9f5363 d531709 4e9b286 5f58cac 4e9b286 d5ade87 4e9b286 c3d833e 4e9b286 eb02780 31fe9de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import base64
import io
import os
import tempfile
import time
import traceback
from dataclasses import dataclass
from queue import Queue
from threading import Thread
import gradio as gr
import librosa
import numpy as np
import requests
from gradio_webrtc import StreamHandler, WebRTC
from huggingface_hub import snapshot_download
from pydub import AudioSegment
from twilio.rest import Client
from server import serve
# from server import serve
from utils.vad import VadOptions, collect_chunks, get_speech_timestamps
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")
IP = "0.0.0.0"
PORT = 60808
thread = Thread(target=serve, daemon=True)
thread.start()
API_URL = "http://0.0.0.0:60808/chat"
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
rtc_configuration = {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
else:
rtc_configuration = None
# recording parameters
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5
# playing parameters
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 20 * 4096
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def warm_up():
frames = np.zeros((1, 1600)) # 1024 frames of 2 bytes each
_, frames, tcost = run_vad(frames, 16000)
print(f"warm up done, time_cost: {tcost:.3f} s")
# warm_up()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
responding: bool = False
stopped: bool = False
buffer: np.ndarray | None = None
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
duration = len(audio) / sampling_rate
dur_vad, _, _ = run_vad(audio, sampling_rate)
if duration >= 0.60:
if dur_vad > 0.2 and not state.started_talking:
print("started talking")
state.started_talking = True
if state.started_talking:
if state.stream is None:
state.stream = audio
else:
state.stream = np.concatenate((state.stream, audio))
state.buffer = None
if dur_vad < 0.1 and state.started_talking:
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=sampling_rate,
sample_width=audio.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
segment.export(f.name, format="wav")
print("input file written", f.name)
return True
return False
def speaking(audio_bytes: str):
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
files = {"audio": base64_encoded}
byte_buffer = b""
with requests.post(API_URL, json=files, stream=True) as response:
try:
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
if chunk:
# Create an audio segment from the numpy array
byte_buffer += chunk
audio_segment = AudioSegment(
chunk + b"\x00" if len(chunk) % 2 != 0 else chunk,
frame_rate=OUT_RATE,
sample_width=OUT_SAMPLE_WIDTH,
channels=OUT_CHANNELS,
)
# Export the audio segment to a numpy array
audio_np = np.array(audio_segment.get_array_of_samples())
yield audio_np.reshape(1, -1)
all_output_audio = AudioSegment(
byte_buffer,
frame_rate=OUT_RATE,
sample_width=OUT_SAMPLE_WIDTH,
channels=1,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
all_output_audio.export(f.name, format="wav")
print("output file written", f.name)
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def process_audio(audio: tuple, state: AppState) -> None:
frame_rate, array = audio
array = np.squeeze(array)
if not state.sampling_rate:
state.sampling_rate = frame_rate
if state.buffer is None:
state.buffer = array
else:
state.buffer = np.concatenate((state.buffer, array))
pause_detected = determine_pause(state.buffer, state.sampling_rate, state)
state.pause_detected = pause_detected
def response(state: AppState):
if not state.pause_detected and not state.started_talking:
return None
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
for numpy_array in speaking(audio_buffer.getvalue()):
yield (OUT_RATE, numpy_array, "mono")
class OmniHandler(StreamHandler):
def __init__(self) -> None:
super().__init__(
expected_layout="mono", output_sample_rate=OUT_RATE, output_frame_size=480
)
self.chunk_queue = Queue()
self.state = AppState()
self.generator = None
self.duration = 0
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if self.state.responding:
return
process_audio(frame, self.state)
if self.state.pause_detected:
self.chunk_queue.put(True)
def reset(self):
self.generator = None
self.state = AppState()
self.duration = 0
def emit(self):
if not self.generator:
self.chunk_queue.get()
self.state.responding = True
self.generator = response(self.state)
try:
return next(self.generator)
except StopIteration:
self.reset()
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Omni Chat (Powered by WebRTC ⚡️)
</h1>
"""
)
with gr.Column():
with gr.Group():
audio = WebRTC(
label="Stream",
rtc_configuration=rtc_configuration,
mode="send-receive",
modality="audio",
)
audio.stream(fn=OmniHandler(), inputs=[audio], outputs=[audio], time_limit=60)
demo.launch(ssr_mode=False)
|