Spaces:
Running
Running
File size: 7,634 Bytes
b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 29d30f2 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 29d30f2 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 b2e5de5 9b35006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from __future__ import annotations as _annotations
import json
import os
from dataclasses import dataclass
from typing import Any
import gradio as gr
from dotenv import load_dotenv
from httpx import AsyncClient
from pydantic_ai import Agent, ModelRetry, RunContext
from pydantic_ai.messages import ModelStructuredResponse, ModelTextResponse, ToolReturn
load_dotenv()
@dataclass
class Deps:
client: AsyncClient
weather_api_key: str | None
geo_api_key: str | None
weather_agent = Agent(
"openai:gpt-4o",
system_prompt="You are an expert packer. A user will ask you for help packing for a trip given a destination. Use your weather tools to provide a concise and effective packing list. Also ask follow up questions if neccessary.",
deps_type=Deps,
retries=2,
)
@weather_agent.tool
async def get_lat_lng(
ctx: RunContext[Deps], location_description: str
) -> dict[str, float]:
"""Get the latitude and longitude of a location.
Args:
ctx: The context.
location_description: A description of a location.
"""
if ctx.deps.geo_api_key is None:
# if no API key is provided, return a dummy response (London)
return {"lat": 51.1, "lng": -0.1}
params = {
"q": location_description,
"api_key": ctx.deps.geo_api_key,
}
r = await ctx.deps.client.get("https://geocode.maps.co/search", params=params)
r.raise_for_status()
data = r.json()
if data:
return {"lat": data[0]["lat"], "lng": data[0]["lon"]}
else:
raise ModelRetry("Could not find the location")
@weather_agent.tool
async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str, Any]:
"""Get the weather at a location.
Args:
ctx: The context.
lat: Latitude of the location.
lng: Longitude of the location.
"""
if ctx.deps.weather_api_key is None:
# if no API key is provided, return a dummy response
return {"temperature": "21 °C", "description": "Sunny"}
params = {
"apikey": ctx.deps.weather_api_key,
"location": f"{lat},{lng}",
"units": "metric",
}
r = await ctx.deps.client.get(
"https://api.tomorrow.io/v4/weather/realtime", params=params
)
r.raise_for_status()
data = r.json()
values = data["data"]["values"]
# https://docs.tomorrow.io/reference/data-layers-weather-codes
code_lookup = {
1000: "Clear, Sunny",
1100: "Mostly Clear",
1101: "Partly Cloudy",
1102: "Mostly Cloudy",
1001: "Cloudy",
2000: "Fog",
2100: "Light Fog",
4000: "Drizzle",
4001: "Rain",
4200: "Light Rain",
4201: "Heavy Rain",
5000: "Snow",
5001: "Flurries",
5100: "Light Snow",
5101: "Heavy Snow",
6000: "Freezing Drizzle",
6001: "Freezing Rain",
6200: "Light Freezing Rain",
6201: "Heavy Freezing Rain",
7000: "Ice Pellets",
7101: "Heavy Ice Pellets",
7102: "Light Ice Pellets",
8000: "Thunderstorm",
}
return {
"temperature": f'{values["temperatureApparent"]:0.0f}°C',
"description": code_lookup.get(values["weatherCode"], "Unknown"),
}
TOOL_TO_DISPLAY_NAME = {"get_lat_lng": "Geocoding API", "get_weather": "Weather API"}
client = AsyncClient()
weather_api_key = os.getenv("WEATHER_API_KEY")
# create a free API key at https://geocode.maps.co/
geo_api_key = os.getenv("GEO_API_KEY")
deps = Deps(client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key)
async def stream_from_agent(prompt: str, chatbot: list[dict], past_messages: list):
chatbot.append({"role": "user", "content": prompt})
yield gr.Textbox(interactive=False, value=""), chatbot, gr.skip()
async with weather_agent.run_stream(
prompt, deps=deps, message_history=past_messages
) as result:
for message in result.new_messages():
past_messages.append(message)
if isinstance(message, ModelStructuredResponse):
for call in message.calls:
gr_message = {
"role": "assistant",
"content": "",
"metadata": {
"title": f"### 🛠️ Using {TOOL_TO_DISPLAY_NAME[call.tool_name]}",
"id": call.tool_id,
},
}
chatbot.append(gr_message)
if isinstance(message, ToolReturn):
for gr_message in chatbot:
if gr_message.get("metadata", {}).get("id", "") == message.tool_id:
gr_message["content"] = f"Output: {json.dumps(message.content)}"
yield gr.skip(), chatbot, gr.skip()
chatbot.append({"role": "assistant", "content": ""})
async for message in result.stream_text():
chatbot[-1]["content"] = message
yield gr.skip(), chatbot, gr.skip()
data = await result.get_data()
past_messages.append(ModelTextResponse(content=data))
yield gr.Textbox(interactive=True), gr.skip(), past_messages
async def handle_retry(chatbot, past_messages: list, retry_data: gr.RetryData):
new_history = chatbot[: retry_data.index]
previous_prompt = chatbot[retry_data.index]["content"]
past_messages = past_messages[: retry_data.index]
async for update in stream_from_agent(previous_prompt, new_history, past_messages):
yield update
def undo(chatbot, past_messages: list, undo_data: gr.UndoData):
new_history = chatbot[: undo_data.index]
past_messages = past_messages[: undo_data.index]
return chatbot[undo_data.index]["content"], new_history, past_messages
def select_data(message: gr.SelectData) -> str:
return message.value["text"]
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
<img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
<div>
<h1 style="margin: 0 0 1rem 0">Vacation Packing Assistant</h1>
<h3 style="margin: 0 0 0.5rem 0">
This assistant will help you pack for your vacation. Enter your destination and it will provide you with a concise packing list based on the weather forecast.
</h3>
<h3 style="margin: 0">
Feel free to ask for help with any other questions you have about your trip!
</h3>
</div>
</div>
"""
)
past_messages = gr.State([])
chatbot = gr.Chatbot(
label="Packing Assistant",
type="messages",
avatar_images=(None, "https://ai.pydantic.dev/img/logo-white.svg"),
examples=[
{"text": "I am going to Paris for the holidays, what should I pack?"},
{"text": "I am going to Tokyo this week."},
],
)
with gr.Row():
prompt = gr.Textbox(
lines=1,
show_label=False,
placeholder="I am planning a trip to Miami, what should I pack?",
)
generation = prompt.submit(
stream_from_agent,
inputs=[prompt, chatbot, past_messages],
outputs=[prompt, chatbot, past_messages],
)
chatbot.example_select(select_data, None, [prompt])
chatbot.retry(
handle_retry, [chatbot, past_messages], [prompt, chatbot, past_messages]
)
chatbot.undo(undo, [chatbot, past_messages], [prompt, chatbot, past_messages])
if __name__ == "__main__":
demo.launch()
|