freealise's picture
Update app.py
827e23a verified
raw
history blame
46.6 kB
import gradio as gr
import cv2
from PIL import Image
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
from collections import Counter
import mediapy
#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
blurin = "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
edge = []
gradient = None
params = { "fnum":0 }
pcolors = []
frame_selected = 0
frames = []
backups = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
return model.infer_image(image)
#def predict_depth(model, image):
# return model(image)["depth"]
def make_video(video_path, outdir='./vis_video_depth', encoder='vits', blur_data=blurin, o=1, b=32):
if encoder not in ["vitl","vitb","vits","vitg"]:
encoder = "vits"
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
#mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
#temp_frame_dir = tempfile.mkdtemp()
#margin_width = 50
#to_tensor_transform = transforms.ToTensor()
#DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
#depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
global masks
count = 0
n = 0
depth_frames = []
orig_frames = []
backup_frames = []
thumbnail_old = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
else:
print(count)
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
#frame = transform({'image': frame})['image']
#frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
#
depth = predict_depth(raw_frame[:, :, ::-1], model)
depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
#
#depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
#depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
#depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
#depth = depth.cpu().numpy().astype(np.uint8)
#depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
#depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
# Remove white border around map:
# define lower and upper limits of white
#white_lo = np.array([250,250,250])
#white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]], 250, 255)
# change image to black where we found white
depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]][mask>0] = 0
mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]], 192, 255)
depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 192
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
#raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
#raw_frame[:, :, 3] = 255
if cframes < 16:
thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
if len(thumbnail_old) > 0:
diff = thumbnail - thumbnail_old
#print(diff)
c = Counter(diff)
value, cc = c.most_common()[0]
if value == 0 and cc > int(16*32*0.8):
count += 1
continue
thumbnail_old = thumbnail
blur_frame = blur_image(raw_frame, depth_color, blur_data)
cv2.imwrite(f"f{count}.png", blur_frame)
orig_frames.append(f"f{count}.png")
cv2.imwrite(f"f{count}_.png", blur_frame)
backup_frames.append(f"f{count}_.png")
cv2.imwrite(f"f{count}_dmap.png", depth_color)
depth_frames.append(f"f{count}_dmap.png")
depth_gray = seg_frame(depth_gray, o, b) + 128
print(depth_gray[depth_gray>128]-128)
cv2.imwrite(f"f{count}_mask.png", depth_gray)
masks.append(f"f{count}_mask.png")
count += 1
final_vid = create_video(orig_frames, frame_rate, "orig")
#final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
global gradient
global frame_selected
global depths
global frames
global backups
frames = orig_frames
backups = backup_frames
depths = depth_frames
if depth_color.shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif depth_color.shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten())
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
nl = [[0,0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
nx = np.cos(d_lon) * np.sin(d_lat)
ny = np.cos(d_lat)
nz = np.sin(d_lon) * np.sin(d_lat)
# Convert to cartesian coordinates
x = radius * nx
y = radius * ny
z = radius * nz
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
nls = np.stack([-nx, -ny, -nz], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
nl = np.concatenate((nl, nls), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv, nl]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth, blur_data, loadall):
global depths
global pcolors
global frame_selected
global mesh
global mesh_n
global scene
if loadall == False:
mesh = []
mesh_n = []
fnum = frame_selected
#print(image[fnum][0])
#print(depth["composite"])
depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth)
pts3d = points[0]
uv = points[1]
nl = points[2]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
uvs = uv.reshape(-1, 2)
#print(uvs)
#verts = pts3d.reshape(-1, 3)
verts = [[0,0,0]]
normals = nl.reshape(-1, 3)
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128,128,128,0]]
#for i in range(0,1): #(0,4)
#clrs = np.concatenate((clrs, colors), axis=0)
#i = i+1
#verts, clrs
#pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
#pcd.compute_vertex_normals()
#pcd.paint_uniform_color((1.0, 1.0, 1.0))
#mesh.append(pcd)
#print(mesh[len(mesh)-1])
if not str(fnum) in mesh_n:
mesh_n.append(str(fnum))
print('mesh - ok')
# Save as glb
#glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
#o3d.io.write_triangle_mesh(glb_file.name, pcd)
#print('file - ok')
return "./TriangleWithoutIndices.gltf", ",".join(mesh_n)
def blur_image(image, depth, blur_data):
blur_a = blur_data.split()
print(f'blur data {blur_data}')
blur_frame = image.copy()
j = 0
while j < 256:
i = 255 - j
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+1,i+1,i+1])
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
#print(f'kernel size {int(blur_a[j])}')
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
j = j + 1
white = cv2.inRange(blur_frame, np.array([255,255,255]), np.array([255,255,255]))
blur_frame[white>0] = (254,254,254)
return blur_frame
def loadfile(f):
return f
def show_json(txt):
data = json.loads(txt)
print(txt)
i=0
while i < len(data[2]):
data[2][i] = data[2][i]["image"]["path"]
data[4][i] = data[4][i]["path"]
i=i+1
return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
def seg_frame(newmask, b, d):
if newmask.shape[0] == 2048: #height
gd = cv2.imread('./gradient_large.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
elif newmask.shape[0] == 1024:
gd = cv2.imread('./gradient.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
else:
gd = cv2.imread('./gradient_small.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
newmask[np.absolute(newmask.astype(np.int16)-gd.astype(np.int16))<16] = 0
ret,newmask = cv2.threshold(newmask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#b = 1
#d = 32
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
bd = cv2.erode(newmask, element)
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
bg = cv2.dilate(newmask, element)
bg[bg.shape[0]-64:bg.shape[0],0:bg.shape[1]] = 0
mask = np.zeros(newmask.shape[:2],np.uint8)
# https://docs.opencv.org/4.x/d8/d83/tutorial_py_grabcut.html
# wherever it is marked white (sure foreground), change mask=1
# wherever it is marked black (sure background), change mask=0
mask[bg == 255] = 3
mask[bd == 255] = 1 #2: probable bg, 3: probable fg
return mask
def select_frame(d, evt: gr.SelectData):
global frame_selected
global depths
global masks
global edge
if evt.index != frame_selected:
edge = []
frame_selected = evt.index
return depths[frame_selected], frame_selected
def switch_rows(v):
global frames
global depths
if v == True:
print(depths[0])
return depths
else:
print(frames[0])
return frames
def bincount(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
def reset_mask(d):
global frame_selected
global frames
global backups
global masks
global depths
global edge
edge = []
backup = cv2.imread(backups[frame_selected]).astype(np.uint8)
cv2.imwrite(frames[frame_selected], backup)
d["layers"][0] = None
return gr.ImageEditor(value=d)
def draw_mask(o, b, v, d, evt: gr.EventData):
global frames
global depths
global params
global frame_selected
global masks
global gradient
global edge
points = json.loads(v)
pts = np.array(points, np.int32)
pts = pts.reshape((-1,1,2))
if len(edge) == 0 or params["fnum"] != frame_selected:
if params["fnum"] != frame_selected:
d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
params["fnum"] = frame_selected
bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
bg[bg==255] = 0
edge = bg.copy()
else:
bg = edge.copy()
x = points[len(points)-1][0]
y = points[len(points)-1][1]
mask = cv2.imread(masks[frame_selected], cv2.IMREAD_GRAYSCALE).astype(np.uint8)
mask[mask==128] = 0
print(mask[mask>0]-128)
d["layers"][0] = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGBA)
sel = cv2.floodFill(mask, None, (x, y), 1, 2, 2, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
sel = sel[1:sel.shape[0]-1, 1:sel.shape[1]-1]
d["layers"][0][sel==0] = (0,0,0,0)
mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
mask[mask==0] = 128
print(mask[mask>128]-128)
mask, bgdModel, fgdModel = cv2.grabCut(cv2.cvtColor(d["background"], cv2.COLOR_RGBA2RGB), mask-128, None,None,None,15, cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[mask>0] = (255,255,255)
cv2.imwrite(frames[frame_selected], frame)
return gr.ImageEditor(value=d)
def findNormals(format):
global depths
d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
zy, zx = np.gradient(d_im)
# You may also consider using Sobel to get a joint Gaussian smoothing and differentation
# to reduce noise
#zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
#zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
if format == "opengl":
zy = -zy
normal = np.dstack((np.ones_like(d_im), -zy, -zx))
n = np.linalg.norm(normal, axis=2)
normal[:, :, 0] /= n
normal[:, :, 1] /= n
normal[:, :, 2] /= n
# offset and rescale values to be in 0-255
normal += 1
normal /= 2
normal *= 255
return (normal[:, :, ::-1]).astype(np.uint8)
load_model="""
async(c, o, p, d, n, m)=>{
var intv = setInterval(function(){
if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
try {
if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
var then = new Date().getTime();
var now, delta;
const interval = 1000 / 25;
const tolerance = 0.1;
BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
now = new Date().getTime();
delta = now - then;
then = now - (delta % interval);
if (delta >= interval - tolerance) {
BABYLON.Engine.LastCreatedScene.render();
}
});
BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(255,255,255,255);
BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
//BABYLON.Engine.LastCreatedScene.autoClear = false;
//BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
/*for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
}
}*/
BABYLON.Engine.LastCreatedScene.getAnimationRatio();
//BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
});
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
//alert(o);
var o_ = o.split(",");
var q = BABYLON.Engine.LastCreatedScene.meshes;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
var dome = [];
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
{
resolution: 16,
size: 512
}, BABYLON.Engine.LastCreatedScene);
var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
}
clearInterval(intv);
}
} catch(e) {alert(e);}
} else if (BABYLON || BABYLON == null) {
try {
BABYLON = null;
if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
}
document.getElementById("iframe3D").src = "index.htm";
document.getElementById("iframe3D").onload = function() {
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
alert(o);
var o_ = o.split(",");
document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
alert(o_[j]);
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
}
}
toggleDisplay("model");
clearInterval(intv);
} catch(e) {alert(e)}
}
}, 40);
}
"""
js = """
async()=>{
console.log('Hi');
const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;
for (var i=0; i<256; i++) {
const hr = document.createElement('hr');
hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
chart.appendChild(hr);
}
function resetLine() {
a.fill(1);
for (var i=0; i<256; i++) {
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = '32px';
}
}
resetLine();
window.resetLine = resetLine;
function pointerDown(x, y) {
md = true;
xold = parseInt(x - chart.getBoundingClientRect().x);
yold = parseInt(y - chart.getBoundingClientRect().y);
chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;
function pointerUp() {
md = false;
var evt = document.createEvent('Event');
evt.initEvent('input', true, false);
blur_in.dispatchEvent(evt);
chart.title = '';
}
window.pointerUp = pointerUp;
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
function drawLine(x, y) {
x = parseInt(x - chart.getBoundingClientRect().x);
y = parseInt(y - chart.getBoundingClientRect().y);
if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
if (y < 32) {
a[x] = Math.abs(32-y)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = y + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
} else if (y < 64) {
a[x] = Math.abs(y-32)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = (64-y) + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
}
blur_in.value = a.join(' ');
xold = x;
yold = y;
chart.title = xold + ',' + yold;
}
}
window.drawLine = drawLine;
}
"""
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css, js=js) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
submit = gr.Button("Submit")
output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
output_switch = gr.Checkbox(label="Show depths")
with gr.Accordion(label="Depths", open=False):
output_depth = gr.Files(label="Depth files", interactive=False)
output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
with gr.Row():
selector = gr.HTML(value="""
<a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
this.style.fontWeight=\"bold\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
if (p != \"\") { p += \", \"; }
p += \"[\" + x + \", \" + y + \"]\";
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
}
} else {
this.style.fontWeight=\"normal\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
}' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
reset = gr.Button("Reset", size='sm')
with gr.Accordion(label="Border", open=False):
boffset = gr.Slider(label="Offset", value=1, maximum=256, minimum=0, step=1)
bsize = gr.Slider(label="Size", value=32, maximum=256, minimum=0, step=1)
mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
mouse.input(fn=draw_mask, show_progress="minimal", inputs=[boffset, bsize, mouse, output_mask], outputs=[output_mask])
reset.click(fn=reset_mask, inputs=[output_mask], outputs=[output_mask])
normals_out = gr.Image(label="Normal map", interactive=False)
format_normals = gr.Radio(choices=["directx", "opengl"])
find_normals = gr.Button("Find normals")
find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
processed_zip = gr.File(label="Output Archive", interactive=False)
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
<style>
body {
user-select: none;
}
#chart hr {
width: 1px;
height: 1px;
clear: none;
border: 0;
padding:0;
display: inline-block;
position: relative;
vertical-align: top;
margin-top:32px;
}
#chart {
padding:0;
margin:0;
width:256px;
height:64px;
background-color:#808080;
touch-action: none;
}
</style>
""")
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
for (var i=0; i<256; i++) {
var avg = 0;
var div = this.value;
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
if (pts_a[j]) {
avg += parseInt(pts_a[j]);
} else if (div > 1) {
div--;
}
}
pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
}
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
' oninput='
this.parentNode.childNodes[2].innerText = this.value;
' onchange='this.click();'/><span>1</span>""")
with gr.Accordion(label="Blur levels", open=False):
blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value=blurin)
with gr.Accordion(label="Locations", open=False):
selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected])
example_coords = """[
{"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
{"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
{"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
{"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
{"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
]"""
coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
'/><span>0.8</span>""")
camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
screenshot: true,
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
'>reset camera</a>""")
contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
'/><span>1.0</span>""")
exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
'/><span>1.0</span>""")
load_all = gr.Checkbox(label="Load all")
render = gr.Button("Render")
input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
def on_submit(uploaded_video,model_type,blur_in,boffset,bsize,coordinates):
global locations
locations = []
avg = [0, 0]
locations = json.loads(coordinates)
for k, location in enumerate(locations):
if "tiles" in locations[k]:
locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
else:
locations[k]["heading"] = 0
locations[k]["pitch"] = 0
if "location" in locations[k]:
locations[k] = locations[k]["location"]["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
else:
locations[k]["lat"] = 0
locations[k]["lng"] = 0
if len(locations) > 0:
avg[0] = avg[0] / len(locations)
avg[1] = avg[1] / len(locations)
for k, location in enumerate(locations):
lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
print(locations)
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type,blur_data=blurin,o=boffset,b=bsize)
return output_video_path + (json.dumps(locations),)
submit.click(on_submit, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
render.click(None, inputs=[coords, mesh_order, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, mesh_order])
example_files = [["./examples/streetview.mp4", "vits", blurin, 1, 32, example_coords]]
examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
if __name__ == '__main__':
demo.queue().launch()