freealise commited on
Commit
5d85dd3
·
verified ·
1 Parent(s): 5962e81

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +1190 -0
app.py ADDED
@@ -0,0 +1,1190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ import os
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torchvision import transforms
9
+ from torchvision.transforms import Compose
10
+ import tempfile
11
+ from functools import partial
12
+ import spaces
13
+ from zipfile import ZipFile
14
+ from vincenty import vincenty
15
+ import json
16
+ from collections import Counter
17
+ import mediapy
18
+
19
+ #from depth_anything.dpt import DepthAnything
20
+ #from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
21
+ from huggingface_hub import hf_hub_download
22
+ from depth_anything_v2.dpt import DepthAnythingV2
23
+
24
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
25
+ model_configs = {
26
+ 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
27
+ 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
28
+ 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
29
+ 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
30
+ }
31
+ encoder2name = {
32
+ 'vits': 'Small',
33
+ 'vitb': 'Base',
34
+ 'vitl': 'Large',
35
+ 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
36
+ }
37
+
38
+ edge = []
39
+ gradient = None
40
+ params = { "fnum":0, "l":16 }
41
+ dcolor = []
42
+ pcolors = []
43
+ frame_selected = 0
44
+ frames = []
45
+ depths = []
46
+ masks = []
47
+ locations = []
48
+ mesh = []
49
+ mesh_n = []
50
+ scene = None
51
+
52
+ def zip_files(files_in, files_out):
53
+ with ZipFile("depth_result.zip", "w") as zipObj:
54
+ for idx, file in enumerate(files_in):
55
+ zipObj.write(file, file.split("/")[-1])
56
+ for idx, file in enumerate(files_out):
57
+ zipObj.write(file, file.split("/")[-1])
58
+ return "depth_result.zip"
59
+
60
+ def create_video(frames, fps, type):
61
+ print("building video result")
62
+ imgs = []
63
+ for j, img in enumerate(frames):
64
+ imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
65
+
66
+ mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
67
+ return type + "_result.mp4"
68
+
69
+ @torch.no_grad()
70
+ #@spaces.GPU
71
+ def predict_depth(image, model):
72
+ return model.infer_image(image)
73
+
74
+ #def predict_depth(model, image):
75
+ # return model(image)["depth"]
76
+
77
+ def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
78
+ if encoder not in ["vitl","vitb","vits","vitg"]:
79
+ encoder = "vits"
80
+
81
+ model_name = encoder2name[encoder]
82
+ model = DepthAnythingV2(**model_configs[encoder])
83
+ filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
84
+ state_dict = torch.load(filepath, map_location="cpu")
85
+ model.load_state_dict(state_dict)
86
+ model = model.to(DEVICE).eval()
87
+
88
+ #mapper = {"vits":"small","vitb":"base","vitl":"large"}
89
+ # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
90
+ # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
91
+ # Define path for temporary processed frames
92
+ #temp_frame_dir = tempfile.mkdtemp()
93
+
94
+ #margin_width = 50
95
+ #to_tensor_transform = transforms.ToTensor()
96
+
97
+ #DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
98
+ # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
99
+ #depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
100
+
101
+ # total_params = sum(param.numel() for param in depth_anything.parameters())
102
+ # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
103
+
104
+ #transform = Compose([
105
+ # Resize(
106
+ # width=518,
107
+ # height=518,
108
+ # resize_target=False,
109
+ # keep_aspect_ratio=True,
110
+ # ensure_multiple_of=14,
111
+ # resize_method='lower_bound',
112
+ # image_interpolation_method=cv2.INTER_CUBIC,
113
+ # ),
114
+ # NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
115
+ # PrepareForNet(),
116
+ #])
117
+
118
+ if os.path.isfile(video_path):
119
+ if video_path.endswith('txt'):
120
+ with open(video_path, 'r') as f:
121
+ lines = f.read().splitlines()
122
+ else:
123
+ filenames = [video_path]
124
+ else:
125
+ filenames = os.listdir(video_path)
126
+ filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
127
+ filenames.sort()
128
+
129
+ # os.makedirs(outdir, exist_ok=True)
130
+
131
+ for k, filename in enumerate(filenames):
132
+ file_size = os.path.getsize(filename)/1024/1024
133
+ if file_size > 128.0:
134
+ print(f'File size of {filename} larger than 128Mb, sorry!')
135
+ return filename
136
+ print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
137
+
138
+ raw_video = cv2.VideoCapture(filename)
139
+ frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
140
+ frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
141
+ if frame_rate < 1:
142
+ frame_rate = 1
143
+ cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
144
+ print(f'frames: {cframes}, fps: {frame_rate}')
145
+ # output_width = frame_width * 2 + margin_width
146
+
147
+ #filename = os.path.basename(filename)
148
+ # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
149
+ #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
150
+ # output_path = tmpfile.name
151
+ #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
152
+ #fourcc = cv2.VideoWriter_fourcc(*'mp4v')
153
+ #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
154
+ global masks
155
+ count = 0
156
+ n = 0
157
+ depth_frames = []
158
+ orig_frames = []
159
+ thumbnail_old = []
160
+
161
+ while raw_video.isOpened():
162
+ ret, raw_frame = raw_video.read()
163
+ if not ret:
164
+ break
165
+ else:
166
+ print(count)
167
+
168
+ frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
169
+ frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
170
+ #frame = transform({'image': frame})['image']
171
+ #frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
172
+ raw_frame_bg = cv2.medianBlur(raw_frame, 255)
173
+
174
+ #
175
+ depth = predict_depth(raw_frame[:, :, ::-1], model)
176
+ depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
177
+ #
178
+
179
+ #depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
180
+ #depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
181
+ #depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
182
+ #depth = depth.cpu().numpy().astype(np.uint8)
183
+ #depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
184
+ #depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
185
+
186
+ # Remove white border around map:
187
+ # define lower and upper limits of white
188
+ #white_lo = np.array([250,250,250])
189
+ #white_hi = np.array([255,255,255])
190
+ # mask image to only select white
191
+ mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
192
+ # change image to black where we found white
193
+ depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0
194
+
195
+ mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
196
+ depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160
197
+
198
+ depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
199
+ # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
200
+ # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
201
+
202
+ # out.write(combined_frame)
203
+ # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
204
+ # cv2.imwrite(frame_path, combined_frame)
205
+
206
+ #raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
207
+ #raw_frame[:, :, 3] = 255
208
+
209
+ if cframes < 16:
210
+ thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
211
+ if len(thumbnail_old) > 0:
212
+ diff = thumbnail - thumbnail_old
213
+ #print(diff)
214
+ c = Counter(diff)
215
+ value, cc = c.most_common()[0]
216
+ if value == 0 and cc > int(16*32*0.8):
217
+ count += 1
218
+ continue
219
+ thumbnail_old = thumbnail
220
+
221
+ cv2.imwrite(f"f{count}.png", raw_frame)
222
+ orig_frames.append(f"f{count}.png")
223
+
224
+ cv2.imwrite(f"f{count}_dmap.png", depth_color)
225
+ depth_frames.append(f"f{count}_dmap.png")
226
+
227
+ cv2.imwrite(f"f{count}_mask.png", depth_gray)
228
+ masks.append(f"f{count}_mask.png")
229
+ count += 1
230
+
231
+ #final_vid = create_video(orig_frames, frame_rate, "orig")
232
+ final_vid = create_video(depth_frames, frame_rate, "depth")
233
+
234
+ final_zip = zip_files(orig_frames, depth_frames)
235
+ raw_video.release()
236
+ # out.release()
237
+ cv2.destroyAllWindows()
238
+
239
+ global gradient
240
+ global frame_selected
241
+ global depths
242
+ global frames
243
+ frames = orig_frames
244
+ depths = depth_frames
245
+
246
+ if depth_color.shape[0] == 2048: #height
247
+ gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
248
+ elif depth_color.shape[0] == 1024:
249
+ gradient = cv2.imread('./gradient.png').astype(np.uint8)
250
+ else:
251
+ gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
252
+
253
+ return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
254
+
255
+ def depth_edges_mask(depth):
256
+ """Returns a mask of edges in the depth map.
257
+ Args:
258
+ depth: 2D numpy array of shape (H, W) with dtype float32.
259
+ Returns:
260
+ mask: 2D numpy array of shape (H, W) with dtype bool.
261
+ """
262
+ # Compute the x and y gradients of the depth map.
263
+ depth_dx, depth_dy = np.gradient(depth)
264
+ # Compute the gradient magnitude.
265
+ depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
266
+ # Compute the edge mask.
267
+ mask = depth_grad > 0.05
268
+ return mask
269
+
270
+ def pano_depth_to_world_points(depth):
271
+ """
272
+ 360 depth to world points
273
+ given 2D depth is an equirectangular projection of a spherical image
274
+ Treat depth as radius
275
+ longitude : -pi to pi
276
+ latitude : -pi/2 to pi/2
277
+ """
278
+
279
+ # Convert depth to radius
280
+ radius = (255 - depth.flatten())
281
+
282
+ lon = np.linspace(0, np.pi*2, depth.shape[1])
283
+ lat = np.linspace(0, np.pi, depth.shape[0])
284
+ lon, lat = np.meshgrid(lon, lat)
285
+ lon = lon.flatten()
286
+ lat = lat.flatten()
287
+
288
+ pts3d = [[0,0,0]]
289
+ uv = [[0,0]]
290
+ nl = [[0,0,0]]
291
+ for i in range(0, 1): #(0,2)
292
+ for j in range(0, 1): #(0,2)
293
+ #rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
294
+ #rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
295
+ d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
296
+ d_lat = lat + j/2 * np.pi / depth.shape[0]
297
+
298
+ nx = np.cos(d_lon) * np.sin(d_lat)
299
+ ny = np.cos(d_lat)
300
+ nz = np.sin(d_lon) * np.sin(d_lat)
301
+
302
+ # Convert to cartesian coordinates
303
+ x = radius * nx
304
+ y = radius * ny
305
+ z = radius * nz
306
+
307
+ pts = np.stack([x, y, z], axis=1)
308
+ uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
309
+ nls = np.stack([-nx, -ny, -nz], axis=1)
310
+
311
+ pts3d = np.concatenate((pts3d, pts), axis=0)
312
+ uv = np.concatenate((uv, uvs), axis=0)
313
+ nl = np.concatenate((nl, nls), axis=0)
314
+ #print(f'i: {i}, j: {j}')
315
+ j = j+1
316
+ i = i+1
317
+
318
+ return [pts3d, uv, nl]
319
+
320
+ def rgb2gray(rgb):
321
+ return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
322
+
323
+ def get_mesh(image, depth, blur_data, loadall):
324
+ global depths
325
+ global pcolors
326
+ global frame_selected
327
+ global mesh
328
+ global mesh_n
329
+ global scene
330
+ if loadall == False:
331
+ mesh = []
332
+ mesh_n = []
333
+ fnum = frame_selected
334
+
335
+ #print(image[fnum][0])
336
+ #print(depth["composite"])
337
+
338
+ depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
339
+ blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
340
+ gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
341
+
342
+ print('depth to gray - ok')
343
+ points = pano_depth_to_world_points(gdepth)
344
+ pts3d = points[0]
345
+ uv = points[1]
346
+ nl = points[2]
347
+ print('radius from depth - ok')
348
+
349
+ # Create a trimesh mesh from the points
350
+ # Each pixel is connected to its 4 neighbors
351
+ # colors are the RGB values of the image
352
+ uvs = uv.reshape(-1, 2)
353
+ #print(uvs)
354
+ #verts = pts3d.reshape(-1, 3)
355
+ verts = [[0,0,0]]
356
+ normals = nl.reshape(-1, 3)
357
+ rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
358
+ colors = rgba.reshape(-1, 4)
359
+ clrs = [[128,128,128,0]]
360
+
361
+ #for i in range(0,1): #(0,4)
362
+ #clrs = np.concatenate((clrs, colors), axis=0)
363
+ #i = i+1
364
+ #verts, clrs
365
+
366
+ #pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
367
+ #pcd.compute_vertex_normals()
368
+ #pcd.paint_uniform_color((1.0, 1.0, 1.0))
369
+ #mesh.append(pcd)
370
+ #print(mesh[len(mesh)-1])
371
+ if not str(fnum) in mesh_n:
372
+ mesh_n.append(str(fnum))
373
+ print('mesh - ok')
374
+
375
+ # Save as glb
376
+ glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
377
+ #o3d.io.write_triangle_mesh(glb_file.name, pcd)
378
+ print('file - ok')
379
+ return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)
380
+
381
+ def blur_image(image, depth, blur_data):
382
+ blur_a = blur_data.split()
383
+ print(f'blur data {blur_data}')
384
+
385
+ blur_frame = image.copy()
386
+ j = 0
387
+ while j < 256:
388
+ i = 255 - j
389
+ blur_lo = np.array([i,i,i])
390
+ blur_hi = np.array([i+1,i+1,i+1])
391
+ blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
392
+
393
+ print(f'kernel size {int(blur_a[j])}')
394
+ blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
395
+
396
+ blur_frame[blur_mask>0] = blur[blur_mask>0]
397
+ j = j + 1
398
+
399
+ return blur_frame
400
+
401
+ def loadfile(f):
402
+ return f
403
+
404
+ def show_json(txt):
405
+ data = json.loads(txt)
406
+ print(txt)
407
+ i=0
408
+ while i < len(data[2]):
409
+ data[2][i] = data[2][i]["image"]["path"]
410
+ data[4][i] = data[4][i]["path"]
411
+ i=i+1
412
+ return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
413
+
414
+
415
+ def select_frame(d, evt: gr.SelectData):
416
+ global dcolor
417
+ global frame_selected
418
+ global masks
419
+ global edge
420
+
421
+ if evt.index != frame_selected:
422
+ edge = []
423
+ mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
424
+ cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
425
+ frame_selected = evt.index
426
+
427
+ if len(dcolor) == 0:
428
+ bg = [127, 127, 127, 255]
429
+ else:
430
+ bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
431
+
432
+ return masks[frame_selected], frame_selected, bg
433
+
434
+ def switch_rows(v):
435
+ global frames
436
+ global depths
437
+ if v == True:
438
+ print(depths[0])
439
+ return depths
440
+ else:
441
+ print(frames[0])
442
+ return frames
443
+
444
+ def optimize(v, d):
445
+ global pcolors
446
+ global dcolor
447
+ global frame_selected
448
+ global frames
449
+ global depths
450
+
451
+ if v == True:
452
+ ddepth = cv2.CV_16S
453
+ kernel_size = 3
454
+ l = 16
455
+
456
+ dcolor = []
457
+ for k, f in enumerate(frames):
458
+ frame = cv2.imread(frames[k]).astype(np.uint8)
459
+
460
+ # convert to np.float32
461
+ f = np.float32(frame.reshape((-1,3)))
462
+ # define criteria, number of clusters(K) and apply kmeans()
463
+ criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
464
+ ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
465
+ # Now convert back into uint8, and make original image
466
+ center = np.uint8(center)
467
+ res = center[label.flatten()]
468
+ frame = res.reshape((frame.shape))
469
+
470
+ depth = cv2.imread(depths[k]).astype(np.uint8)
471
+ mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
472
+ dcolor.append(bincount(frame[mask==0]))
473
+ print(dcolor[k])
474
+ clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
475
+ i=0
476
+ while i<len(clrs):
477
+ clrs[i] = list(clrs[i][1])
478
+ clrs[i].append(255)
479
+ i=i+1
480
+ print(clrs)
481
+ pcolors = clrs
482
+
483
+ #mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
484
+ #mask[mask>0] = 255
485
+ #frame[mask==0] = (0, 0, 0)
486
+ cv2.imwrite(frames[k], frame)
487
+
488
+ #depth[mask==0] = (255,255,255)
489
+ mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
490
+ depth[mask>0] = (255,255,255)
491
+ depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
492
+ depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
493
+ cv2.imwrite(depths[k], depth)
494
+
495
+ if d == False:
496
+ return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
497
+ else:
498
+ return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
499
+
500
+ def bincount(a):
501
+ a2D = a.reshape(-1,a.shape[-1])
502
+ col_range = (256, 256, 256) # generically : a2D.max(0)+1
503
+ a1D = np.ravel_multi_index(a2D.T, col_range)
504
+ return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
505
+
506
+ def reset_mask():
507
+ global frame_selected
508
+ global masks
509
+ global depths
510
+ global edge
511
+
512
+ edge = []
513
+ mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
514
+ cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
515
+ return masks[frame_selected], depths
516
+
517
+ def apply_mask(d, b):
518
+ global frames
519
+ global frame_selected
520
+ global masks
521
+ global depths
522
+ global edge
523
+
524
+ edge = []
525
+ mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
526
+ mask[mask<255] = 0
527
+ b = b*2+1
528
+ dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
529
+ mask = cv2.dilate(mask, dilation)
530
+ mask_b = cv2.GaussianBlur(mask, (b,b), 0)
531
+ b = b*2+1
532
+ dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
533
+ dmask = cv2.dilate(mask, dilation)
534
+ dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)
535
+
536
+ for k, mk in enumerate(masks):
537
+ if k != frame_selected and k < len(depths):
538
+ cv2.imwrite(masks[k], dmask)
539
+ frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
540
+ frame[:, :, 3] = dmask_b
541
+ cv2.imwrite(frames[k], frame)
542
+
543
+ frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
544
+ frame[:, :, 3] = 255 - mask_b
545
+ cv2.imwrite(frames[frame_selected], frame)
546
+
547
+ cv2.imwrite(masks[frame_selected], mask) #d["background"]
548
+ return masks[frame_selected], depths, frames
549
+
550
+ def draw_mask(l, t, v, d, evt: gr.EventData):
551
+ global depths
552
+ global params
553
+ global frame_selected
554
+ global masks
555
+ global gradient
556
+ global edge
557
+
558
+ points = json.loads(v)
559
+ pts = np.array(points, np.int32)
560
+ pts = pts.reshape((-1,1,2))
561
+
562
+ if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
563
+ if len(edge) > 0:
564
+ d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
565
+
566
+ if d["background"].shape[0] == 2048: #height
567
+ gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
568
+ elif d["background"].shape[0] == 1024:
569
+ gradient = cv2.imread('./gradient.png').astype(np.uint8)
570
+ else:
571
+ gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
572
+
573
+ bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
574
+
575
+ diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
576
+ mask = cv2.inRange(diff, 0, t)
577
+ #kernel = np.ones((c,c),np.float32)/(c*c)
578
+ #mask = cv2.filter2D(mask,-1,kernel)
579
+ dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
580
+ mask = cv2.dilate(mask, dilation)
581
+
582
+ #indices = np.arange(0,256) # List of all colors
583
+ #divider = np.linspace(0,255,l+1)[1] # we get a divider
584
+ #quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
585
+ #color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
586
+ #palette = quantiz[color_levels]
587
+
588
+ #for i in range(l):
589
+ # bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
590
+ #bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint
591
+
592
+ res = np.float32(bg.reshape((-1,1)))
593
+ criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
594
+ ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
595
+ center = np.uint8(center)
596
+ res = center[label.flatten()]
597
+ bg = res.reshape((bg.shape))
598
+
599
+ bg[mask>0] = 0
600
+ bg[bg==255] = 0
601
+
602
+ params["fnum"] = frame_selected
603
+ params["l"] = l
604
+
605
+ d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
606
+ edge = bg.copy()
607
+ else:
608
+ bg = edge.copy()
609
+
610
+ x = points[len(points)-1][0]
611
+ y = points[len(points)-1][1]
612
+
613
+ #int(t*256/l)
614
+ mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
615
+ # 255 << 8 tells to fill with the value 255)
616
+ mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
617
+
618
+ d["layers"][0][mask>0] = (255,255,255,255)
619
+
620
+ return gr.ImageEditor(value=d)
621
+
622
+
623
+ def findNormals(format):
624
+ global depths
625
+ d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
626
+ zy, zx = np.gradient(d_im)
627
+ # You may also consider using Sobel to get a joint Gaussian smoothing and differentation
628
+ # to reduce noise
629
+ #zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
630
+ #zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
631
+
632
+ if format == "opengl":
633
+ zy = -zy
634
+
635
+ normal = np.dstack((np.ones_like(d_im), -zy, -zx))
636
+ n = np.linalg.norm(normal, axis=2)
637
+ normal[:, :, 0] /= n
638
+ normal[:, :, 1] /= n
639
+ normal[:, :, 2] /= n
640
+
641
+ # offset and rescale values to be in 0-255
642
+ normal += 1
643
+ normal /= 2
644
+ normal *= 255
645
+
646
+ return (normal[:, :, ::-1]).astype(np.uint8)
647
+
648
+
649
+ load_model="""
650
+ async(c, o, b, p, d, n, m)=>{
651
+ var intv = setInterval(function(){
652
+ if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
653
+ try {
654
+ if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
655
+ BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
656
+
657
+ var then = new Date().getTime();
658
+ var now, delta;
659
+ const interval = 1000 / 25;
660
+ const tolerance = 0.1;
661
+ BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
662
+ BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
663
+ now = new Date().getTime();
664
+ delta = now - then;
665
+ then = now - (delta % interval);
666
+ if (delta >= interval - tolerance) {
667
+ BABYLON.Engine.LastCreatedScene.render();
668
+ }
669
+ });
670
+
671
+ var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
672
+ BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
673
+ for (var i=0; i<bg.length; i++) {
674
+ bg[i] /= 255;
675
+ }
676
+ BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
677
+ BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
678
+ //BABYLON.Engine.LastCreatedScene.autoClear = false;
679
+ //BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
680
+ for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
681
+ if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
682
+ BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
683
+ }
684
+ }
685
+ BABYLON.Engine.LastCreatedScene.getAnimationRatio();
686
+ //BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
687
+ });
688
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
689
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
690
+ pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
691
+ }
692
+ }
693
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
694
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
695
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
696
+
697
+ BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
698
+
699
+ document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
700
+ document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
701
+ document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
702
+
703
+ if (o.indexOf(""+n) < 0) {
704
+ if (o != "") { o += ","; }
705
+ o += n;
706
+ }
707
+ //alert(o);
708
+ var o_ = o.split(",");
709
+ var q = BABYLON.Engine.LastCreatedScene.meshes;
710
+ for(i = 0; i < q.length; i++) {
711
+ let mesh = q[i];
712
+ mesh.dispose(false, true);
713
+ }
714
+ var dome = [];
715
+ for (var j=0; j<o_.length; j++) {
716
+ o_[j] = parseInt(o_[j]);
717
+ dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
718
+ {
719
+ resolution: 16,
720
+ size: 512
721
+ }, BABYLON.Engine.LastCreatedScene);
722
+ var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
723
+ for(i = 0; i < q.length; i++) {
724
+ let mesh = q[i];
725
+ mesh.dispose(false, true);
726
+ }
727
+ //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
728
+ //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
729
+ BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
730
+ BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
731
+ BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
732
+ BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
733
+ }
734
+ clearInterval(intv);
735
+ }
736
+ } catch(e) {alert(e);}
737
+ } else if (BABYLON || BABYLON == null) {
738
+ try {
739
+ BABYLON = null;
740
+ if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
741
+ document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
742
+ }
743
+ document.getElementById("iframe3D").src = "index.htm";
744
+ document.getElementById("iframe3D").onload = function() {
745
+ if (o.indexOf(""+n) < 0) {
746
+ if (o != "") { o += ","; }
747
+ o += n;
748
+ }
749
+ alert(o);
750
+ var o_ = o.split(",");
751
+ document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
752
+ document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
753
+ document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
754
+ document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
755
+ document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
756
+ for (var j=0; j<o_.length; j++) {
757
+ o_[j] = parseInt(o_[j]);
758
+ alert(o_[j]);
759
+ document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
760
+ document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
761
+ }
762
+ }
763
+ toggleDisplay("model");
764
+
765
+ clearInterval(intv);
766
+ } catch(e) {alert(e)}
767
+ }
768
+ }, 40);
769
+ }
770
+ """
771
+
772
+ js = """
773
+ async()=>{
774
+ console.log('Hi');
775
+
776
+ const chart = document.getElementById('chart');
777
+ const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
778
+ var md = false;
779
+ var xold = 128;
780
+ var yold = 32;
781
+ var a = new Array(256);
782
+ var l;
783
+
784
+ for (var i=0; i<256; i++) {
785
+ const hr = document.createElement('hr');
786
+ hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
787
+ chart.appendChild(hr);
788
+ }
789
+
790
+ function resetLine() {
791
+ a.fill(1);
792
+ for (var i=0; i<256; i++) {
793
+ chart.childNodes[i].style.height = a[i] + 'px';
794
+ chart.childNodes[i].style.marginTop = '32px';
795
+ }
796
+ }
797
+ resetLine();
798
+ window.resetLine = resetLine;
799
+
800
+ function pointerDown(x, y) {
801
+ md = true;
802
+ xold = parseInt(x - chart.getBoundingClientRect().x);
803
+ yold = parseInt(y - chart.getBoundingClientRect().y);
804
+ chart.title = xold + ',' + yold;
805
+ }
806
+ window.pointerDown = pointerDown;
807
+
808
+ function pointerUp() {
809
+ md = false;
810
+ var evt = document.createEvent('Event');
811
+ evt.initEvent('input', true, false);
812
+ blur_in.dispatchEvent(evt);
813
+ chart.title = '';
814
+ }
815
+ window.pointerUp = pointerUp;
816
+
817
+ function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
818
+
819
+ function drawLine(x, y) {
820
+ x = parseInt(x - chart.getBoundingClientRect().x);
821
+ y = parseInt(y - chart.getBoundingClientRect().y);
822
+ if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
823
+ if (y < 32) {
824
+ a[x] = Math.abs(32-y)*2 + 1;
825
+ chart.childNodes[x].style.height = a[x] + 'px';
826
+ chart.childNodes[x].style.marginTop = y + 'px';
827
+
828
+ for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
829
+ l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
830
+
831
+ if (l < 32) {
832
+ a[i] = Math.abs(32-l)*2 + 1;
833
+ chart.childNodes[i].style.height = a[i] + 'px';
834
+ chart.childNodes[i].style.marginTop = l + 'px';
835
+ } else if (l < 64) {
836
+ a[i] = Math.abs(l-32)*2 + 1;
837
+ chart.childNodes[i].style.height = a[i] + 'px';
838
+ chart.childNodes[i].style.marginTop = (64-l) + 'px';
839
+ }
840
+ }
841
+ } else if (y < 64) {
842
+ a[x] = Math.abs(y-32)*2 + 1;
843
+ chart.childNodes[x].style.height = a[x] + 'px';
844
+ chart.childNodes[x].style.marginTop = (64-y) + 'px';
845
+
846
+ for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
847
+ l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
848
+
849
+ if (l < 32) {
850
+ a[i] = Math.abs(32-l)*2 + 1;
851
+ chart.childNodes[i].style.height = a[i] + 'px';
852
+ chart.childNodes[i].style.marginTop = l + 'px';
853
+ } else if (l < 64) {
854
+ a[i] = Math.abs(l-32)*2 + 1;
855
+ chart.childNodes[i].style.height = a[i] + 'px';
856
+ chart.childNodes[i].style.marginTop = (64-l) + 'px';
857
+ }
858
+ }
859
+ }
860
+ blur_in.value = a.join(' ');
861
+ xold = x;
862
+ yold = y;
863
+ chart.title = xold + ',' + yold;
864
+ }
865
+ }
866
+ window.drawLine = drawLine;
867
+
868
+ }
869
+ """
870
+
871
+ css = """
872
+ #img-display-container {
873
+ max-height: 100vh;
874
+ }
875
+ #img-display-input {
876
+ max-height: 80vh;
877
+ }
878
+ #img-display-output {
879
+ max-height: 80vh;
880
+ }
881
+ """
882
+
883
+ title = "# Depth Anything V2 Video"
884
+ description = """**Depth Anything V2** on full video files.
885
+ Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
886
+
887
+
888
+ #transform = Compose([
889
+ # Resize(
890
+ # width=518,
891
+ # height=518,
892
+ # resize_target=False,
893
+ # keep_aspect_ratio=True,
894
+ # ensure_multiple_of=14,
895
+ # resize_method='lower_bound',
896
+ # image_interpolation_method=cv2.INTER_CUBIC,
897
+ # ),
898
+ # NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
899
+ # PrepareForNet(),
900
+ #])
901
+
902
+ # @torch.no_grad()
903
+ # def predict_depth(model, image):
904
+ # return model(image)
905
+
906
+ with gr.Blocks(css=css, js=js) as demo:
907
+ gr.Markdown(title)
908
+ gr.Markdown(description)
909
+ gr.Markdown("### Video Depth Prediction demo")
910
+
911
+ with gr.Row():
912
+ with gr.Column():
913
+ input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
914
+ input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
915
+ input_video = gr.Video(label="Input Video", format="mp4")
916
+ input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
917
+ submit = gr.Button("Submit")
918
+ output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
919
+ output_switch = gr.Checkbox(label="Show depths")
920
+ with gr.Accordion(label="Depths", open=False):
921
+ output_depth = gr.Files(label="Depth files", interactive=False)
922
+ output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
923
+ optimize_switch = gr.Checkbox(label="Optimize")
924
+ bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
925
+ optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
926
+ output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
927
+ with gr.Row():
928
+ selector = gr.HTML(value="""
929
+ <a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
930
+ this.style.fontWeight=\"bold\";
931
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
932
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
933
+
934
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
935
+ var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
936
+ var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
937
+
938
+ var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
939
+ if (p != \"\") { p += \", \"; }
940
+ p += \"[\" + x + \", \" + y + \"]\";
941
+ document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
942
+
943
+ var evt = document.createEvent(\"Event\");
944
+ evt.initEvent(\"input\", true, false);
945
+ document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
946
+ }
947
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
948
+
949
+ document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
950
+
951
+ }
952
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
953
+
954
+ document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
955
+
956
+ }
957
+ } else {
958
+ this.style.fontWeight=\"normal\";
959
+ document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
960
+
961
+ }' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
962
+
963
+ document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
964
+
965
+ ' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
966
+ apply = gr.Button("Apply", size='sm')
967
+ reset = gr.Button("Reset", size='sm')
968
+ with gr.Accordion(label="Edge", open=False):
969
+ levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
970
+ tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
971
+ bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
972
+ mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
973
+ mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
974
+ apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
975
+ reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])
976
+
977
+ normals_out = gr.Image(label="Normal map", interactive=False)
978
+ format_normals = gr.Radio(choices=["directx", "opengl"])
979
+ find_normals = gr.Button("Find normals")
980
+ find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])
981
+
982
+ with gr.Column():
983
+ model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
984
+ processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
985
+ processed_zip = gr.File(label="Output Archive", interactive=False)
986
+ result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
987
+ chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
988
+ <style>
989
+ body {
990
+ user-select: none;
991
+ }
992
+ #chart hr {
993
+ width: 1px;
994
+ height: 1px;
995
+ clear: none;
996
+ border: 0;
997
+ padding:0;
998
+ display: inline-block;
999
+ position: relative;
1000
+ vertical-align: top;
1001
+ margin-top:32px;
1002
+ }
1003
+ #chart {
1004
+ padding:0;
1005
+ margin:0;
1006
+ width:256px;
1007
+ height:64px;
1008
+ background-color:#808080;
1009
+ touch-action: none;
1010
+ }
1011
+ </style>
1012
+ """)
1013
+ average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
1014
+ var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
1015
+ for (var i=0; i<256; i++) {
1016
+ var avg = 0;
1017
+ var div = this.value;
1018
+ for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
1019
+ if (pts_a[j]) {
1020
+ avg += parseInt(pts_a[j]);
1021
+ } else if (div > 1) {
1022
+ div--;
1023
+ }
1024
+ }
1025
+ pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
1026
+
1027
+ document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
1028
+ document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
1029
+ }
1030
+ document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
1031
+
1032
+ var evt = document.createEvent(\"Event\");
1033
+ evt.initEvent(\"input\", true, false);
1034
+ document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
1035
+ ' oninput='
1036
+ this.parentNode.childNodes[2].innerText = this.value;
1037
+ ' onchange='this.click();'/><span>1</span>""")
1038
+ with gr.Accordion(label="Blur levels", open=False):
1039
+ blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value="1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1")
1040
+ with gr.Accordion(label="Locations", open=False):
1041
+ selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
1042
+ output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
1043
+ example_coords = """[
1044
+ {"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
1045
+ {"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
1046
+ {"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
1047
+ {"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
1048
+ {"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
1049
+ ]"""
1050
+ coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
1051
+ mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
1052
+
1053
+ result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
1054
+ html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
1055
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
1056
+ var evt = document.createEvent(\"Event\");
1057
+ evt.initEvent(\"click\", true, false);
1058
+ document.getElementById(\"reset_cam\").dispatchEvent(evt);
1059
+ }
1060
+ BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
1061
+ BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
1062
+ this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
1063
+
1064
+ document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
1065
+ '/><span>0.8</span>""")
1066
+ camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
1067
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
1068
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
1069
+ screenshot: true,
1070
+ pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
1071
+ }
1072
+ }
1073
+ BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
1074
+ BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
1075
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
1076
+ BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
1077
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
1078
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
1079
+
1080
+ document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
1081
+ document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
1082
+ document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
1083
+ '>reset camera</a>""")
1084
+ contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
1085
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
1086
+ var evt = document.createEvent(\"Event\");
1087
+ evt.initEvent(\"click\", true, false);
1088
+ document.getElementById(\"reset_cam\").dispatchEvent(evt);
1089
+ }
1090
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
1091
+ this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
1092
+ '/><span>1.0</span>""")
1093
+ exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
1094
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
1095
+ var evt = document.createEvent(\"Event\");
1096
+ evt.initEvent(\"click\", true, false);
1097
+ document.getElementById(\"reset_cam\").dispatchEvent(evt);
1098
+ }
1099
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
1100
+ this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
1101
+ '/><span>1.0</span>""")
1102
+ canvas = gr.HTML(value="""<a href='#' onclick='
1103
+ if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
1104
+ var evt = document.createEvent(\"Event\");
1105
+ evt.initEvent(\"click\", true, false);
1106
+ document.getElementById(\"reset_cam\").dispatchEvent(evt);
1107
+ }
1108
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;
1109
+
1110
+ BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
1111
+ if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
1112
+ BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
1113
+ try {
1114
+ BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera,
1115
+ { precision: 1.0 }, (durl) => {
1116
+ var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
1117
+ var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
1118
+ <defs>
1119
+ <filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
1120
+ <feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
1121
+ </filter>
1122
+ </defs>
1123
+ <image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
1124
+ </svg>`;
1125
+ document.getElementById(\"cnv_out\").width = cnvs.width;
1126
+ document.getElementById(\"cnv_out\").height = cnvs.height;
1127
+ document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);
1128
+ }
1129
+ );
1130
+ } catch(e) { alert(e); }
1131
+ // https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
1132
+ }
1133
+ });
1134
+ '/>snapshot</a><br/><img src='' id='img_out' onload='
1135
+ var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
1136
+ ctxt.drawImage(this, 0, 0);
1137
+ '/><br/>
1138
+ <canvas id='cnv_out'/>""")
1139
+ load_all = gr.Checkbox(label="Load all")
1140
+ render = gr.Button("Render")
1141
+ input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
1142
+
1143
+ def on_submit(uploaded_video,model_type,coordinates):
1144
+ global locations
1145
+ locations = []
1146
+ avg = [0, 0]
1147
+
1148
+ locations = json.loads(coordinates)
1149
+ for k, location in enumerate(locations):
1150
+ if "tiles" in locations[k]:
1151
+ locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
1152
+ locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
1153
+ else:
1154
+ locations[k]["heading"] = 0
1155
+ locations[k]["pitch"] = 0
1156
+
1157
+ if "location" in locations[k]:
1158
+ locations[k] = locations[k]["location"]["latLng"]
1159
+ avg[0] = avg[0] + locations[k]["lat"]
1160
+ avg[1] = avg[1] + locations[k]["lng"]
1161
+ else:
1162
+ locations[k]["lat"] = 0
1163
+ locations[k]["lng"] = 0
1164
+
1165
+ if len(locations) > 0:
1166
+ avg[0] = avg[0] / len(locations)
1167
+ avg[1] = avg[1] / len(locations)
1168
+
1169
+ for k, location in enumerate(locations):
1170
+ lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
1171
+ lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
1172
+ locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
1173
+ locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
1174
+ print(locations)
1175
+
1176
+ # Process the video and get the path of the output video
1177
+ output_video_path = make_video(uploaded_video,encoder=model_type)
1178
+
1179
+ return output_video_path + (json.dumps(locations),)
1180
+
1181
+ submit.click(on_submit, inputs=[input_video, model_type, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
1182
+ render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
1183
+ render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])
1184
+
1185
+ example_files = [["./examples/streetview.mp4", "vits", example_coords]]
1186
+ examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
1187
+
1188
+
1189
+ if __name__ == '__main__':
1190
+ demo.queue().launch()