import gradio as gr import cv2 from PIL import Image import numpy as np import os import torch import torch.nn.functional as F from torchvision import transforms from torchvision.transforms import Compose import tempfile from functools import partial import spaces from zipfile import ZipFile from vincenty import vincenty import json from collections import Counter import mediapy #from depth_anything.dpt import DepthAnything #from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet from huggingface_hub import hf_hub_download from depth_anything_v2.dpt import DepthAnythingV2 DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } encoder2name = { 'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large', 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint } blurin = "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" edge = [] gradient = None params = { "fnum":0 } pcolors = [] frame_selected = 0 frames = [] backups = [] depths = [] masks = [] locations = [] mesh = [] mesh_n = [] scene = None def zip_files(files_in, files_out): with ZipFile("depth_result.zip", "w") as zipObj: for idx, file in enumerate(files_in): zipObj.write(file, file.split("/")[-1]) for idx, file in enumerate(files_out): zipObj.write(file, file.split("/")[-1]) return "depth_result.zip" def create_video(frames, fps, type): print("building video result") imgs = [] for j, img in enumerate(frames): imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB)) mediapy.write_video(type + "_result.mp4", imgs, fps=fps) return type + "_result.mp4" @torch.no_grad() #@spaces.GPU def predict_depth(image, model): return model.infer_image(image) #def predict_depth(model, image): # return model(image)["depth"] def make_video(video_path, outdir='./vis_video_depth', encoder='vits', blur_data=blurin, o=1, b=32): if encoder not in ["vitl","vitb","vits","vitg"]: encoder = "vits" model_name = encoder2name[encoder] model = DepthAnythingV2(**model_configs[encoder]) filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") state_dict = torch.load(filepath, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() #mapper = {"vits":"small","vitb":"base","vitl":"large"} # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval() # Define path for temporary processed frames #temp_frame_dir = tempfile.mkdtemp() #margin_width = 50 #to_tensor_transform = transforms.ToTensor() #DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval() #depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}") # total_params = sum(param.numel() for param in depth_anything.parameters()) # print('Total parameters: {:.2f}M'.format(total_params / 1e6)) #transform = Compose([ # Resize( # width=518, # height=518, # resize_target=False, # keep_aspect_ratio=True, # ensure_multiple_of=14, # resize_method='lower_bound', # image_interpolation_method=cv2.INTER_CUBIC, # ), # NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # PrepareForNet(), #]) if os.path.isfile(video_path): if video_path.endswith('txt'): with open(video_path, 'r') as f: lines = f.read().splitlines() else: filenames = [video_path] else: filenames = os.listdir(video_path) filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')] filenames.sort() # os.makedirs(outdir, exist_ok=True) for k, filename in enumerate(filenames): file_size = os.path.getsize(filename)/1024/1024 if file_size > 128.0: print(f'File size of {filename} larger than 128Mb, sorry!') return filename print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename) raw_video = cv2.VideoCapture(filename) frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) if frame_rate < 1: frame_rate = 1 cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT)) print(f'frames: {cframes}, fps: {frame_rate}') # output_width = frame_width * 2 + margin_width #filename = os.path.basename(filename) # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4') #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile: # output_path = tmpfile.name #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height)) #fourcc = cv2.VideoWriter_fourcc(*'mp4v') #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height)) global masks count = 0 n = 0 depth_frames = [] orig_frames = [] backup_frames = [] thumbnail_old = [] while raw_video.isOpened(): ret, raw_frame = raw_video.read() if not ret: break else: print(count) frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0 frame_pil = Image.fromarray((frame * 255).astype(np.uint8)) #frame = transform({'image': frame})['image'] #frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE) raw_frame_bg = cv2.medianBlur(raw_frame, 255) # depth = predict_depth(raw_frame[:, :, ::-1], model) depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8) # #depth = to_tensor_transform(predict_depth(depth_anything, frame_pil)) #depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0] #depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 #depth = depth.cpu().numpy().astype(np.uint8) #depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE) #depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY) # Remove white border around map: # define lower and upper limits of white #white_lo = np.array([250,250,250]) #white_hi = np.array([255,255,255]) # mask image to only select white mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]], 250, 255) # change image to black where we found white depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]][mask>0] = 0 mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]], 192, 255) depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 192 depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR) # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color]) # out.write(combined_frame) # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png") # cv2.imwrite(frame_path, combined_frame) #raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA) #raw_frame[:, :, 3] = 255 if cframes < 16: thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten() if len(thumbnail_old) > 0: diff = thumbnail - thumbnail_old #print(diff) c = Counter(diff) value, cc = c.most_common()[0] if value == 0 and cc > int(16*32*0.8): count += 1 continue thumbnail_old = thumbnail blur_frame = blur_image(raw_frame, depth_color, blur_data) cv2.imwrite(f"f{count}.png", blur_frame) orig_frames.append(f"f{count}.png") cv2.imwrite(f"f{count}_.png", blur_frame) backup_frames.append(f"f{count}_.png") cv2.imwrite(f"f{count}_dmap.png", depth_color) depth_frames.append(f"f{count}_dmap.png") depth_gray = seg_frame(depth_gray, o, b) + 128 print(depth_gray[depth_gray>128]-128) cv2.imwrite(f"f{count}_mask.png", depth_gray) masks.append(f"f{count}_mask.png") count += 1 final_vid = create_video(orig_frames, frame_rate, "orig") #final_vid = create_video(depth_frames, frame_rate, "depth") final_zip = zip_files(orig_frames, depth_frames) raw_video.release() # out.release() cv2.destroyAllWindows() global gradient global frame_selected global depths global frames global backups frames = orig_frames backups = backup_frames depths = depth_frames if depth_color.shape[0] == 2048: #height gradient = cv2.imread('./gradient_large.png').astype(np.uint8) elif depth_color.shape[0] == 1024: gradient = cv2.imread('./gradient.png').astype(np.uint8) else: gradient = cv2.imread('./gradient_small.png').astype(np.uint8) return final_vid, final_zip, frames, masks[frame_selected], depths #output_path def depth_edges_mask(depth): """Returns a mask of edges in the depth map. Args: depth: 2D numpy array of shape (H, W) with dtype float32. Returns: mask: 2D numpy array of shape (H, W) with dtype bool. """ # Compute the x and y gradients of the depth map. depth_dx, depth_dy = np.gradient(depth) # Compute the gradient magnitude. depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) # Compute the edge mask. mask = depth_grad > 0.05 return mask def pano_depth_to_world_points(depth): """ 360 depth to world points given 2D depth is an equirectangular projection of a spherical image Treat depth as radius longitude : -pi to pi latitude : -pi/2 to pi/2 """ # Convert depth to radius radius = (255 - depth.flatten()) lon = np.linspace(0, np.pi*2, depth.shape[1]) lat = np.linspace(0, np.pi, depth.shape[0]) lon, lat = np.meshgrid(lon, lat) lon = lon.flatten() lat = lat.flatten() pts3d = [[0,0,0]] uv = [[0,0]] nl = [[0,0,0]] for i in range(0, 1): #(0,2) for j in range(0, 1): #(0,2) #rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8 #rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8 d_lon = lon + i/2 * np.pi*2 / depth.shape[1] d_lat = lat + j/2 * np.pi / depth.shape[0] nx = np.cos(d_lon) * np.sin(d_lat) ny = np.cos(d_lat) nz = np.sin(d_lon) * np.sin(d_lat) # Convert to cartesian coordinates x = radius * nx y = radius * ny z = radius * nz pts = np.stack([x, y, z], axis=1) uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1) nls = np.stack([-nx, -ny, -nz], axis=1) pts3d = np.concatenate((pts3d, pts), axis=0) uv = np.concatenate((uv, uvs), axis=0) nl = np.concatenate((nl, nls), axis=0) #print(f'i: {i}, j: {j}') j = j+1 i = i+1 return [pts3d, uv, nl] def rgb2gray(rgb): return np.dot(rgb[...,:3], [0.333, 0.333, 0.333]) def get_mesh(image, depth, blur_data, loadall): global depths global pcolors global frame_selected global mesh global mesh_n global scene if loadall == False: mesh = [] mesh_n = [] fnum = frame_selected #print(image[fnum][0]) #print(depth["composite"]) depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8) blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data) gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc) print('depth to gray - ok') points = pano_depth_to_world_points(gdepth) pts3d = points[0] uv = points[1] nl = points[2] print('radius from depth - ok') # Create a trimesh mesh from the points # Each pixel is connected to its 4 neighbors # colors are the RGB values of the image uvs = uv.reshape(-1, 2) #print(uvs) #verts = pts3d.reshape(-1, 3) verts = [[0,0,0]] normals = nl.reshape(-1, 3) rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA) colors = rgba.reshape(-1, 4) clrs = [[128,128,128,0]] #for i in range(0,1): #(0,4) #clrs = np.concatenate((clrs, colors), axis=0) #i = i+1 #verts, clrs #pcd = o3d.geometry.TriangleMesh.create_tetrahedron() #pcd.compute_vertex_normals() #pcd.paint_uniform_color((1.0, 1.0, 1.0)) #mesh.append(pcd) #print(mesh[len(mesh)-1]) if not str(fnum) in mesh_n: mesh_n.append(str(fnum)) print('mesh - ok') # Save as glb glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) #o3d.io.write_triangle_mesh(glb_file.name, pcd) print('file - ok') return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n) def blur_image(image, depth, blur_data): blur_a = blur_data.split() print(f'blur data {blur_data}') blur_frame = image.copy() j = 0 while j < 256: i = 255 - j blur_lo = np.array([i,i,i]) blur_hi = np.array([i+1,i+1,i+1]) blur_mask = cv2.inRange(depth, blur_lo, blur_hi) #print(f'kernel size {int(blur_a[j])}') blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0) blur_frame[blur_mask>0] = blur[blur_mask>0] j = j + 1 white = cv2.inRange(blur_frame, np.array([255,255,255]), np.array([255,255,255])) blur_frame[white>0] = (254,254,254) return blur_frame def loadfile(f): return f def show_json(txt): data = json.loads(txt) print(txt) i=0 while i < len(data[2]): data[2][i] = data[2][i]["image"]["path"] data[4][i] = data[4][i]["path"] i=i+1 return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5] def seg_frame(newmask, b, d): if newmask.shape[0] == 2048: #height gd = cv2.imread('./gradient_large.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8) elif newmask.shape[0] == 1024: gd = cv2.imread('./gradient.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8) else: gd = cv2.imread('./gradient_small.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8) newmask[np.absolute(newmask.astype(np.int16)-gd.astype(np.int16))<16] = 0 ret,newmask = cv2.threshold(newmask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) #b = 1 #d = 32 element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b)) bd = cv2.erode(newmask, element) element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d)) bg = cv2.dilate(newmask, element) bg[bg.shape[0]-64:bg.shape[0],0:bg.shape[1]] = 0 mask = np.zeros(newmask.shape[:2],np.uint8) # https://docs.opencv.org/4.x/d8/d83/tutorial_py_grabcut.html # wherever it is marked white (sure foreground), change mask=1 # wherever it is marked black (sure background), change mask=0 mask[bg == 255] = 3 mask[bd == 255] = 1 #2: probable bg, 3: probable fg return mask def select_frame(d, evt: gr.SelectData): global frame_selected global depths global masks global edge if evt.index != frame_selected: edge = [] frame_selected = evt.index return depths[frame_selected], frame_selected def switch_rows(v): global frames global depths if v == True: print(depths[0]) return depths else: print(frames[0]) return frames def bincount(a): a2D = a.reshape(-1,a.shape[-1]) col_range = (256, 256, 256) # generically : a2D.max(0)+1 a1D = np.ravel_multi_index(a2D.T, col_range) return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range))) def reset_mask(d): global frame_selected global frames global backups global masks global depths global edge edge = [] backup = cv2.imread(backups[frame_selected]).astype(np.uint8) cv2.imwrite(frames[frame_selected], backup) d["layers"][0] = None return gr.ImageEditor(value=d) def draw_mask(o, b, v, d, evt: gr.EventData): global frames global depths global params global frame_selected global masks global gradient global edge points = json.loads(v) pts = np.array(points, np.int32) pts = pts.reshape((-1,1,2)) if len(edge) == 0 or params["fnum"] != frame_selected: if params["fnum"] != frame_selected: d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8) params["fnum"] = frame_selected bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY) bg[bg==255] = 0 edge = bg.copy() else: bg = edge.copy() x = points[len(points)-1][0] y = points[len(points)-1][1] mask = cv2.imread(masks[frame_selected], cv2.IMREAD_GRAYSCALE).astype(np.uint8) mask[mask==128] = 0 print(mask[mask>0]-128) d["layers"][0] = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGBA) sel = cv2.floodFill(mask, None, (x, y), 1, 2, 2, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8) # 255 << 8 tells to fill with the value 255) sel = sel[1:sel.shape[0]-1, 1:sel.shape[1]-1] d["layers"][0][sel==0] = (0,0,0,0) mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY) mask[mask==0] = 128 print(mask[mask>128]-128) mask, bgdModel, fgdModel = cv2.grabCut(cv2.cvtColor(d["background"], cv2.COLOR_RGBA2RGB), mask-128, None,None,None,15, cv2.GC_INIT_WITH_MASK) mask = np.where((mask==2)|(mask==0),0,1).astype('uint8') frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8) frame[mask>0] = (255,255,255) cv2.imwrite(frames[frame_selected], frame) return gr.ImageEditor(value=d) def findNormals(format): global depths d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY) zy, zx = np.gradient(d_im) # You may also consider using Sobel to get a joint Gaussian smoothing and differentation # to reduce noise #zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5) #zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5) if format == "opengl": zy = -zy normal = np.dstack((np.ones_like(d_im), -zy, -zx)) n = np.linalg.norm(normal, axis=2) normal[:, :, 0] /= n normal[:, :, 1] /= n normal[:, :, 2] /= n # offset and rescale values to be in 0-255 normal += 1 normal /= 2 normal *= 255 return (normal[:, :, ::-1]).astype(np.uint8) load_model=""" async(c, o, p, d, n, m)=>{ var intv = setInterval(function(){ if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") { try { if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) { BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable var then = new Date().getTime(); var now, delta; const interval = 1000 / 25; const tolerance = 0.1; BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop(); BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () { now = new Date().getTime(); delta = now - then; then = now - (delta % interval); if (delta >= interval - tolerance) { BABYLON.Engine.LastCreatedScene.render(); } }); BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0); BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(255,255,255,255); BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255); //BABYLON.Engine.LastCreatedScene.autoClear = false; //BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false; for (var i=0; i{ console.log('Hi'); const chart = document.getElementById('chart'); const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0]; var md = false; var xold = 128; var yold = 32; var a = new Array(256); var l; for (var i=0; i<256; i++) { const hr = document.createElement('hr'); hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)'; chart.appendChild(hr); } function resetLine() { a.fill(1); for (var i=0; i<256; i++) { chart.childNodes[i].style.height = a[i] + 'px'; chart.childNodes[i].style.marginTop = '32px'; } } resetLine(); window.resetLine = resetLine; function pointerDown(x, y) { md = true; xold = parseInt(x - chart.getBoundingClientRect().x); yold = parseInt(y - chart.getBoundingClientRect().y); chart.title = xold + ',' + yold; } window.pointerDown = pointerDown; function pointerUp() { md = false; var evt = document.createEvent('Event'); evt.initEvent('input', true, false); blur_in.dispatchEvent(evt); chart.title = ''; } window.pointerUp = pointerUp; function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; } function drawLine(x, y) { x = parseInt(x - chart.getBoundingClientRect().x); y = parseInt(y - chart.getBoundingClientRect().y); if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) { if (y < 32) { a[x] = Math.abs(32-y)*2 + 1; chart.childNodes[x].style.height = a[x] + 'px'; chart.childNodes[x].style.marginTop = y + 'px'; for (var i=Math.min(xold, x)+1; i⊹ Select point ✕ Clear""") reset = gr.Button("Reset", size='sm') with gr.Accordion(label="Border", open=False): boffset = gr.Slider(label="Offset", value=1, maximum=256, minimum=0, step=1) bsize = gr.Slider(label="Size", value=32, maximum=256, minimum=0, step=1) mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False) mouse.input(fn=draw_mask, show_progress="minimal", inputs=[boffset, bsize, mouse, output_mask], outputs=[output_mask]) reset.click(fn=reset_mask, inputs=[output_mask], outputs=[output_mask]) normals_out = gr.Image(label="Normal map", interactive=False) format_normals = gr.Radio(choices=["directx", "opengl"]) find_normals = gr.Button("Find normals") find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out]) with gr.Column(): model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type') processed_video = gr.Video(label="Output Video", format="mp4", interactive=False) processed_zip = gr.File(label="Output Archive", interactive=False) result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud" chart_c = gr.HTML(elem_id="chart_c", value="""
""") average = gr.HTML(value="""1""") with gr.Accordion(label="Blur levels", open=False): blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value=blurin) with gr.Accordion(label="Locations", open=False): selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False) output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected]) example_coords = """[ {"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997}, {"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064}, {"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028}, {"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005}, {"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998} ]""" coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False) mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False) result_file = gr.File(elem_id="file3D", label="3D file", interactive=False) html = gr.HTML(value="""0.8""") camera = gr.HTML(value="""reset camera""") contrast = gr.HTML(value="""1.0""") exposure = gr.HTML(value="""1.0""") canvas = gr.HTML(value="""snapshot

""") load_all = gr.Checkbox(label="Load all") render = gr.Button("Render") input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords]) def on_submit(uploaded_video,model_type,blur_in,boffset,bsize,coordinates): global locations locations = [] avg = [0, 0] locations = json.loads(coordinates) for k, location in enumerate(locations): if "tiles" in locations[k]: locations[k]["heading"] = locations[k]["tiles"]["originHeading"] locations[k]["pitch"] = locations[k]["tiles"]["originPitch"] else: locations[k]["heading"] = 0 locations[k]["pitch"] = 0 if "location" in locations[k]: locations[k] = locations[k]["location"]["latLng"] avg[0] = avg[0] + locations[k]["lat"] avg[1] = avg[1] + locations[k]["lng"] else: locations[k]["lat"] = 0 locations[k]["lng"] = 0 if len(locations) > 0: avg[0] = avg[0] / len(locations) avg[1] = avg[1] / len(locations) for k, location in enumerate(locations): lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000 lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000 locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0])) locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1])) print(locations) # Process the video and get the path of the output video output_video_path = make_video(uploaded_video,encoder=model_type,blur_data=blurin,o=boffset,b=bsize) return output_video_path + (json.dumps(locations),) submit.click(on_submit, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords]) render.click(None, inputs=[coords, mesh_order, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model) render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order]) example_files = [["./examples/streetview.mp4", "vits", blurin, 1, 32, example_coords]] examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords]) if __name__ == '__main__': demo.queue().launch()