Spaces:
Running
Running
File size: 6,014 Bytes
545659d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import cv2
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import tempfile
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
def make_video(video_path, outdir='./vis_video_depth',encoder='vitl'):
# Define path for temporary processed frames
temp_frame_dir = tempfile.mkdtemp()
margin_width = 50
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
total_params = sum(param.numel() for param in depth_anything.parameters())
print('Total parameters: {:.2f}M'.format(total_params / 1e6))
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
output_width = frame_width * 2 + margin_width
filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
# count=0
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame = transform({'image': frame})['image']
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
with torch.no_grad():
depth = depth_anything(frame)
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
out.write(combined_frame)
# count += 1
raw_video.release()
out.release()
return output_path
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
@torch.no_grad()
def predict_depth(model, image):
return model(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
input_video = gr.Video(label="Input Video")
submit = gr.Button("Submit")
processed_video = gr.Video(label="Processed Video")
def on_submit(uploaded_video):
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video)
return output_video_path
submit.click(on_submit, inputs=[input_video], outputs=processed_video)
example_files = os.listdir('assets/examples_video')
example_files.sort()
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=False)
if __name__ == '__main__':
demo.queue().launch() |