File size: 1,558 Bytes
2bacaf7
36bec1c
8ba1b29
36bec1c
 
2bacaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba1b29
 
36bec1c
2bacaf7
 
8ba1b29
2bacaf7
8ba1b29
 
 
 
 
36bec1c
2bacaf7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import gradio as gr
import soundfile as sf
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from gtts import gTTS

# Load the translation model
translation_tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
translation_model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")

# Available target languages
available_languages = {
    'Russian': 'ru',
    'Spanish': 'es',
    'English': 'en',
    'Greek': 'gr'
}

# Function to translate the audio
def translate_audio(audio_file, target_language):
    to_lang = available_languages[target_language]

    # Load audio
    audio, sample_rate = sf.read(audio_file.name)

    # Translate the text
    translation_tokenizer.src_lang = to_lang
    encoded_bg = translation_tokenizer(audio, return_tensors="pt", padding=True, truncation=True)
    generated_tokens = translation_model.generate(**encoded_bg)
    translated_audio = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)

    # Save translated audio
    output_file = "translated_audio.wav"
    sf.write(output_file, translated_audio, sample_rate)

    return output_file

# Gradio interface
audio_input = gr.inputs.Audio(label="Upload audio file")
language_dropdown = gr.inputs.Dropdown(choices=list(available_languages.keys()), label="Select Target Language")
audio_output = gr.outputs.Audio(label="Translated audio file")

iface = gr.Interface(fn=translate_audio, inputs=[audio_input, language_dropdown], outputs=audio_output, title="Audio Translation Demo")
iface.launch()