Spaces:
Build error
Build error
Commit
·
8d7bec1
1
Parent(s):
400111e
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,68 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from gradio import components
|
3 |
import whisper
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
from gtts import gTTS
|
|
|
|
|
6 |
import soundfile as sf
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
result = whisper.decode(model, mel, options)
|
27 |
-
|
28 |
-
text = result.text
|
29 |
-
lang = max(probs, key=probs.get)
|
30 |
-
|
31 |
-
# Translation code from the first code snippet
|
32 |
-
to_lang = 'ru'
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
34 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
35 |
-
|
36 |
-
tokenizer.src_lang = lang
|
37 |
-
encoded_bg = tokenizer(text, return_tensors="pt")
|
38 |
-
generated_tokens = model.generate(**encoded_bg)
|
39 |
-
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
40 |
-
|
41 |
-
# Text-to-speech (TTS) code from the first code snippet
|
42 |
-
tts = gTTS(text=translated_text, lang=to_lang)
|
43 |
-
output_file = "translated_speech.wav"
|
44 |
-
tts.save(output_file)
|
45 |
-
|
46 |
-
# Load the translated audio and return as an output
|
47 |
-
translated_audio, _ = sf.read(output_file, dtype="int16")
|
48 |
-
|
49 |
-
return translated_audio
|
50 |
-
|
51 |
-
title = "Speech-to-Speech Translator"
|
52 |
-
|
53 |
-
input_audio = gr.inputs.Audio(source="microphone")
|
54 |
-
output_audio = gr.outputs.Audio(type="numpy")
|
55 |
-
|
56 |
-
stt_demo = gr.Interface(
|
57 |
-
fn=translate_speech_to_speech,
|
58 |
-
inputs=input_audio,
|
59 |
-
outputs=output_audio,
|
60 |
-
title=title,
|
61 |
-
description="Speak in any language, and the translator will convert it to speech in the target language.",
|
62 |
-
)
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
|
|
3 |
import whisper
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
from gtts import gTTS
|
6 |
+
import sentencepiece
|
7 |
+
import sounddevice as sd
|
8 |
import soundfile as sf
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
|
12 |
+
def translate_voice(audio, target_lang):
|
13 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
14 |
+
temp_filename = temp_audio.name
|
15 |
+
sf.write(temp_filename, audio, 16000)
|
16 |
+
|
17 |
+
model = whisper.load_model("base").float()
|
18 |
+
|
19 |
+
audio = whisper.load_audio(temp_filename)
|
20 |
+
|
21 |
+
audio = whisper.pad_or_trim(audio)
|
22 |
+
|
23 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device).float()
|
24 |
+
|
25 |
+
_, probs = model.detect_language(mel)
|
26 |
+
options = whisper.DecodingOptions(fp16=False)
|
27 |
+
result = whisper.decode(model, mel, options)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
text = result.text
|
30 |
+
lang = max(probs, key=probs.get)
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
33 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
34 |
+
|
35 |
+
tokenizer.src_lang = target_lang
|
36 |
+
encoded_bg = tokenizer(text, return_tensors="pt")
|
37 |
+
generated_tokens = model.generate(**encoded_bg)
|
38 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
39 |
+
|
40 |
+
tts = gTTS(text=translated_text, lang=target_lang)
|
41 |
+
filename = "to_speech.mp3"
|
42 |
+
tts.save(filename)
|
43 |
+
|
44 |
+
return filename, text, translated_text, target_lang
|
45 |
+
|
46 |
+
|
47 |
+
def record_audio():
|
48 |
+
fs = 16000
|
49 |
+
duration = 5 # Record audio for 5 seconds, you can adjust the duration as needed
|
50 |
+
audio = sd.rec(int(duration * fs), samplerate=fs, channels=1)
|
51 |
+
sd.wait()
|
52 |
+
return audio.flatten()
|
53 |
+
|
54 |
+
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=translate_voice,
|
57 |
+
inputs=[
|
58 |
+
gr.inputs.Audio(type="microphone", label="Speak"),
|
59 |
+
gr.inputs.Dropdown(choices=['en', 'ru', 'de', 'fr'], label="Target Language")
|
60 |
+
],
|
61 |
+
outputs=[
|
62 |
+
gr.outputs.Audio(type="filepath", label="Translated Audio"),
|
63 |
+
gr.outputs.Textbox(label="Original Text"),
|
64 |
+
gr.outputs.Textbox(label="Translated Text"),
|
65 |
+
gr.outputs.Textbox(label="Target Language"),
|
66 |
+
]
|
67 |
+
)
|
68 |
+
iface.launch()
|