Spaces:
Runtime error
Runtime error
import os | |
import tempfile | |
import gradio as gr | |
import whisper | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from gtts import gTTS | |
import base64 | |
# Load the models and tokenizer | |
whisper_model = whisper.load_model("base") | |
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100") | |
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100") | |
def translate_audio(input_file, to_lang): | |
# Load the audio file | |
audio = whisper.load_audio(input_file) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
# Detect language using Whisper | |
_, probs = whisper_model.detect_language(mel) | |
lang = max(probs, key=probs.get) | |
# Convert audio to text | |
options = whisper.DecodingOptions() | |
result = whisper.decode(whisper_model, mel, options) | |
text = result.text | |
# Translate the text | |
tokenizer.src_lang = lang | |
encoded_bg = tokenizer(text, return_tensors="pt") | |
generated_tokens = model.generate(**encoded_bg) | |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
# Convert translated text to audio | |
tts = gTTS(text=translated_text, lang=to_lang) | |
temp_output_file = tempfile.NamedTemporaryFile(suffix=".mp3").name | |
tts.save(temp_output_file) | |
# Load audio data from file | |
audio_data = open(temp_output_file, "rb").read() | |
# Convert audio data to Base64 string | |
audio_base64 = base64.b64encode(audio_data).decode("utf-8") | |
return audio_base64 | |
def translate_audio_interface(input_file, to_lang): | |
return translate_audio(input_file, to_lang) | |
iface = gr.Interface( | |
fn=translate_audio_interface, | |
inputs=["file", "text"], | |
outputs="text", | |
title="Audio Translation", | |
description="Uploadd an MP3 file and select the target language for translation.", | |
examples=[ | |
["audio_example.mp3", "en"], | |
["speech_sample.mp3", "fr"], | |
] | |
) | |
iface.launch() | |