Spaces:
Runtime error
Runtime error
Commit
·
292172d
1
Parent(s):
282ede3
Update app.py
Browse files
app.py
CHANGED
@@ -3,56 +3,56 @@ import os
|
|
3 |
import whisper
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
from gtts import gTTS
|
6 |
-
import
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
-
model_translation = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
11 |
-
tokenizer_translation = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
input_audio.save(input_file)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
audio = whisper.pad_or_trim(audio)
|
21 |
-
mel = whisper.log_mel_spectrogram(audio).to(
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
options = whisper.DecodingOptions()
|
24 |
-
result = whisper.decode(
|
25 |
text = result.text
|
26 |
-
lang = max(probs, key=probs.get)
|
27 |
|
28 |
-
# Translate
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
description="Upload an audio file (MP3, WAV, or FLAC) and choose the target language for translation.",
|
56 |
-
theme="default"
|
57 |
-
).launch()
|
58 |
|
|
|
|
3 |
import whisper
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
from gtts import gTTS
|
6 |
+
import IPython.display as ipd
|
7 |
|
8 |
+
# Load Whisper STT model
|
9 |
+
whisper_model = whisper.load_model("base")
|
|
|
|
|
10 |
|
11 |
+
# Load translation models
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
|
|
14 |
|
15 |
+
def translate_speech(audio_file, target_lang):
|
16 |
+
# Load audio
|
17 |
+
audio = whisper.load_audio(audio_file)
|
18 |
audio = whisper.pad_or_trim(audio)
|
19 |
+
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
20 |
+
|
21 |
+
# Detect language
|
22 |
+
_, probs = whisper_model.detect_language(mel)
|
23 |
+
lang = max(probs, key=probs.get)
|
24 |
+
|
25 |
+
# Decode audio into text
|
26 |
options = whisper.DecodingOptions()
|
27 |
+
result = whisper.decode(whisper_model, mel, options)
|
28 |
text = result.text
|
|
|
29 |
|
30 |
+
# Translate text
|
31 |
+
tokenizer.src_lang = lang
|
32 |
+
encoded_text = tokenizer(text, return_tensors="pt")
|
33 |
+
generated_tokens = model.generate(**encoded_text)
|
34 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
35 |
+
|
36 |
+
# Text-to-speech (TTS)
|
37 |
+
tts = gTTS(text=translated_text, lang=target_lang)
|
38 |
+
audio_path = "translated_audio.mp3"
|
39 |
+
tts.save(audio_path)
|
40 |
+
|
41 |
+
return audio_path
|
42 |
+
|
43 |
+
def translate_speech_interface(audio, target_lang):
|
44 |
+
audio_path = "recorded_audio.wav"
|
45 |
+
with open(audio_path, "wb") as f:
|
46 |
+
f.write(audio.read())
|
47 |
+
|
48 |
+
translated_audio = translate_speech(audio_path, target_lang)
|
49 |
+
translated_audio = open(translated_audio, "rb")
|
50 |
+
|
51 |
+
return translated_audio
|
52 |
+
|
53 |
+
# Define the Gradio interface
|
54 |
+
audio_recording = gr.inputs.Audio(source="microphone", type="wav", label="Record your speech")
|
55 |
+
target_language = gr.inputs.Dropdown(["en", "ru", "fr"], label="Target Language")
|
56 |
+
output_audio = gr.outputs.Audio(type="audio/mpeg", label="Translated Audio")
|
|
|
|
|
|
|
57 |
|
58 |
+
gr.Interface(fn=translate_speech_interface, inputs=[audio_recording, target_language], outputs=output_audio, title="Speech Translator").launch()
|