Spaces:
Runtime error
Runtime error
Commit
·
da5250a
1
Parent(s):
7ce46d5
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,45 @@
|
|
1 |
-
import os
|
2 |
-
import tempfile
|
3 |
import gradio as gr
|
|
|
4 |
import whisper
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
from gtts import gTTS
|
7 |
-
import base64
|
8 |
-
|
9 |
-
# Load the models and tokenizer
|
10 |
-
whisper_model = whisper.load_model("base")
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
12 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
13 |
|
14 |
-
def
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
16 |
audio = whisper.load_audio(input_file)
|
17 |
audio = whisper.pad_or_trim(audio)
|
18 |
-
mel = whisper.log_mel_spectrogram(audio).to(
|
19 |
-
|
20 |
-
# Detect language using Whisper
|
21 |
-
_, probs = whisper_model.detect_language(mel)
|
22 |
-
lang = max(probs, key=probs.get)
|
23 |
-
|
24 |
-
# Convert audio to text
|
25 |
options = whisper.DecodingOptions()
|
26 |
-
result = whisper.decode(
|
27 |
text = result.text
|
|
|
28 |
|
29 |
-
# Translate
|
|
|
|
|
30 |
tokenizer.src_lang = lang
|
|
|
31 |
encoded_bg = tokenizer(text, return_tensors="pt")
|
32 |
generated_tokens = model.generate(**encoded_bg)
|
33 |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
34 |
|
35 |
-
#
|
36 |
tts = gTTS(text=translated_text, lang=to_lang)
|
37 |
-
|
38 |
-
tts.save(
|
39 |
-
|
40 |
-
# Load audio data from file
|
41 |
-
audio_data = open(temp_output_file, "rb").read()
|
42 |
|
43 |
-
|
44 |
-
audio_base64 = base64.b64encode(audio_data).decode("utf-8")
|
45 |
-
|
46 |
-
return audio_base64
|
47 |
-
|
48 |
-
def translate_audio_interface(input_file, to_lang):
|
49 |
-
return translate_audio(input_file, to_lang)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
title="Audio Translation",
|
56 |
-
description="Uploadd an MP3 file and select the target language for translation.",
|
57 |
-
examples=[
|
58 |
-
["audio_example.mp3", "en"],
|
59 |
-
["speech_sample.mp3", "fr"],
|
60 |
-
]
|
61 |
-
)
|
62 |
|
63 |
-
|
64 |
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
import whisper
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
from gtts import gTTS
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def speech_to_speech(input_audio, to_lang):
|
8 |
+
# Save the uploaded audio file
|
9 |
+
input_file = "input_audio" + os.path.splitext(input_audio.name)[1]
|
10 |
+
input_audio.save(input_file)
|
11 |
+
|
12 |
+
# Speech-to-Text (STT)
|
13 |
+
model = whisper.load_model("base")
|
14 |
audio = whisper.load_audio(input_file)
|
15 |
audio = whisper.pad_or_trim(audio)
|
16 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
17 |
+
_, probs = model.detect_language(mel)
|
|
|
|
|
|
|
|
|
|
|
18 |
options = whisper.DecodingOptions()
|
19 |
+
result = whisper.decode(model, mel, options)
|
20 |
text = result.text
|
21 |
+
lang = max(probs, key=probs.get)
|
22 |
|
23 |
+
# Translate
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100")
|
25 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100")
|
26 |
tokenizer.src_lang = lang
|
27 |
+
tokenizer.tgt_lang = to_lang
|
28 |
encoded_bg = tokenizer(text, return_tensors="pt")
|
29 |
generated_tokens = model.generate(**encoded_bg)
|
30 |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
31 |
|
32 |
+
# Text-to-Speech (TTS)
|
33 |
tts = gTTS(text=translated_text, lang=to_lang)
|
34 |
+
output_file = "output_audio.mp3"
|
35 |
+
tts.save(output_file)
|
|
|
|
|
|
|
36 |
|
37 |
+
return output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
languages = ["ru", "fr", "es", "de"] # Example languages: Russian, French, Spanish, German
|
40 |
+
file_input = gr.inputs.File(label="Upload Audio", type="audio")
|
41 |
+
dropdown = gr.inputs.Dropdown(languages, label="Translation Language")
|
42 |
+
audio_output = gr.outputs.Audio(type="file", label="Translated Voice")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
gr.Interface(fn=speech_to_speech, inputs=[file_input, dropdown], outputs=audio_output, title="Speech-to-Speech Translator", description="Upload an audio file (MP3, WAV, or FLAC) and choose the target language for translation.", theme="default").launch()
|
45 |
|