import os import gradio as gr import whisper from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from gtts import gTTS # Load Whisper STT model whisper_model = whisper.load_model("base") # Load translation models tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100") model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100") def translate_speech(audio): audio = audio[0] audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) _, probs = whisper_model.detect_language(mel) options = whisper.DecodingOptions(fp16=False) result = whisper.decode(whisper_model, mel, options) text = result.text # Translate text tokenizer.src_lang = 'en' # Assuming the input is always in English encoded_text = tokenizer(text, return_tensors="pt") generated_tokens = model.generate(**encoded_text) translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] # Text-to-speech (TTS) tts = gTTS(text=translated_text, lang='en') # Assuming the target language is English audio_path = "translated_audio.mp3" tts.save(audio_path) return audio_path def translate_speech_interface(audio): translated_audio = translate_speech(audio) translated_audio_bytes = open(translated_audio, "rb").read() return translated_audio_bytes audio_recording = gr.inputs.Audio(source="microphone", type="numpy", label="Record your speech") output_audio = gr.outputs.Audio(type="numpy", label="Translated Audio") iface = gr.Interface(fn=translate_speech_interface, inputs=audio_recording, outputs=output_audio, title="Speech Translator") iface.launch()