|
import torch |
|
import os |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torchvision import transforms |
|
from torch.utils.data import DataLoader, Dataset |
|
from huggingface_hub import hf_hub_download |
|
|
|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
import numpy as np |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score |
|
import random |
|
import os |
|
|
|
from .utils.evaluation import ImageEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Convolutionnal Neural Network" |
|
ROUTE = "/image" |
|
|
|
def parse_boxes(annotation_string): |
|
"""Parse multiple boxes from a single annotation string. |
|
Each box has 5 values: class_id, x_center, y_center, width, height""" |
|
values = [float(x) for x in annotation_string.strip().split()] |
|
boxes = [] |
|
|
|
for i in range(0, len(values), 5): |
|
if i + 5 <= len(values): |
|
|
|
box = values[i+1:i+5] |
|
boxes.append(box) |
|
return boxes |
|
|
|
def compute_iou(box1, box2): |
|
"""Compute Intersection over Union (IoU) between two YOLO format boxes.""" |
|
|
|
def yolo_to_corners(box): |
|
x_center, y_center, width, height = box |
|
x1 = x_center - width/2 |
|
y1 = y_center - height/2 |
|
x2 = x_center + width/2 |
|
y2 = y_center + height/2 |
|
return np.array([x1, y1, x2, y2]) |
|
|
|
box1_corners = yolo_to_corners(box1) |
|
box2_corners = yolo_to_corners(box2) |
|
|
|
|
|
x1 = max(box1_corners[0], box2_corners[0]) |
|
y1 = max(box1_corners[1], box2_corners[1]) |
|
x2 = min(box1_corners[2], box2_corners[2]) |
|
y2 = min(box1_corners[3], box2_corners[3]) |
|
|
|
intersection = max(0, x2 - x1) * max(0, y2 - y1) |
|
|
|
|
|
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1]) |
|
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1]) |
|
union = box1_area + box2_area - intersection |
|
|
|
return intersection / (union + 1e-6) |
|
|
|
def compute_max_iou(true_boxes, pred_box): |
|
"""Compute maximum IoU between a predicted box and all true boxes""" |
|
max_iou = 0 |
|
for true_box in true_boxes: |
|
iou = compute_iou(true_box, pred_box) |
|
max_iou = max(max_iou, iou) |
|
return max_iou |
|
|
|
@router.post(ROUTE, tags=["Image Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_image(request: ImageEvaluationRequest): |
|
""" |
|
Evaluate image classification and object detection for forest fire smoke. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions for both classification and bounding boxes |
|
- Used as a baseline for comparison |
|
|
|
Metrics: |
|
- Classification accuracy: Whether an image contains smoke or not |
|
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
test_dataset = dataset["test"] |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ImageClassifier(nn.Module): |
|
def __init__(self): |
|
super(ImageClassifier, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) |
|
self.relu1 = nn.ReLU() |
|
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) |
|
self.relu2 = nn.ReLU() |
|
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.fc1 = nn.Linear(64 * 16 * 16, 128) |
|
self.relu3 = nn.ReLU() |
|
self.fc2 = nn.Linear(128, 2) |
|
|
|
def forward(self, x): |
|
x = self.pool1(self.relu1(self.conv1(x))) |
|
x = self.pool2(self.relu2(self.conv2(x))) |
|
x = x.view(x.size(0), -1) |
|
x = self.relu3(self.fc1(x)) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = ImageClassifier() |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.SGD(model.parameters(), lr=0.1) |
|
|
|
predictions = [] |
|
true_labels = [] |
|
pred_boxes = [] |
|
true_boxes_list = [] |
|
|
|
|
|
torch.manual_seed(0) |
|
|
|
transform = transforms.Compose([ |
|
transforms.RandomCrop(size=(512, 512)), |
|
transforms.Resize(size=(64, 64)), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.RandomVerticalFlip(), |
|
transforms.RandomRotation(30), |
|
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo_id = "AlexandreL2024/CNN-Image-Classification" |
|
filename = "model_CNN_2Layers.pth" |
|
|
|
|
|
model_path = hf_hub_download(repo_id=repo_id, filename=filename) |
|
|
|
|
|
model = ImageClassifier() |
|
model = model.load_state_dict(torch.load(model_path)) |
|
|
|
|
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
for images, labels in test_loader: |
|
images, labels = images.to(device), labels.to(device) |
|
outputs = model(images) |
|
|
|
probabilities = torch.sigmoid(outputs) |
|
|
|
_, prediction = torch.max(probabilities, 1) |
|
predictions.extend(prediction.cpu().numpy()) |
|
|
|
for example in test_dataset: |
|
|
|
annotation = example.get("annotations", "").strip() |
|
has_smoke = len(annotation) > 0 |
|
true_labels.append(int(has_smoke)) |
|
|
|
|
|
if has_smoke: |
|
|
|
image_true_boxes = parse_boxes(annotation) |
|
true_boxes_list.append(image_true_boxes) |
|
|
|
|
|
|
|
random_box = [ |
|
random.random(), |
|
random.random(), |
|
random.random() * 0.5, |
|
random.random() * 0.5 |
|
] |
|
pred_boxes.append(random_box) |
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
classification_accuracy = accuracy_score(true_labels, predictions) |
|
classification_precision = precision_score(true_labels, predictions) |
|
classification_recall = recall_score(true_labels, predictions) |
|
|
|
|
|
|
|
ious = [] |
|
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes): |
|
max_iou = compute_max_iou(true_boxes, pred_box) |
|
ious.append(max_iou) |
|
|
|
mean_iou = float(np.mean(ious)) if ious else 0.0 |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"classification_accuracy": float(classification_accuracy), |
|
"classification_precision": float(classification_precision), |
|
"classification_recall": float(classification_recall), |
|
"mean_iou": mean_iou, |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |