ypesk commited on
Commit
37072c8
·
verified ·
1 Parent(s): 821e9d2

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +6 -6
tasks/text.py CHANGED
@@ -181,7 +181,7 @@ async def evaluate_text(request: TextEvaluationRequest):
181
  test_dataset = dataset["test"]
182
 
183
  if MODEL =="mlp":
184
- model = ConspiracyClassification768.from_pretrained("ypesk/frugal-ai-EURECOM-mlp-768")
185
  model = model.to(device)
186
  emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
187
  batch_size = 6
@@ -205,7 +205,7 @@ async def evaluate_text(request: TextEvaluationRequest):
205
  elif MODEL == "ct":
206
  model = CTBERT.from_pretrained("ypesk/frugal-ai-EURECOM-ct-bert-baseline")
207
  model = model.to(device)
208
- tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
209
 
210
  test_texts = [t['quote'] for t in test_dataset]
211
 
@@ -225,7 +225,7 @@ async def evaluate_text(request: TextEvaluationRequest):
225
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
226
 
227
  elif MODEL == "modern-base":
228
- model = conspiracyModelBase.from_pretrained("ypesk/frugal-ai-EURECOM-modern-base-baseline")
229
  model = model.to(device)
230
  tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
231
 
@@ -246,7 +246,7 @@ async def evaluate_text(request: TextEvaluationRequest):
246
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
247
 
248
  elif MODEL == "modern-large":
249
- model = conspiracyModelLarge.from_pretrained('ypesk/frugal-ai-EURECOM-modern-large-baseline')
250
  model = model.to(device)
251
  tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-large")
252
 
@@ -267,7 +267,7 @@ async def evaluate_text(request: TextEvaluationRequest):
267
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
268
 
269
  elif MODEL == "gte-base":
270
- model = gteModel.from_pretrained("ypesk/frugal-ai-EURECOM-gte-base-baseline")
271
  model = model.to(device)
272
  tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5')
273
 
@@ -289,7 +289,7 @@ async def evaluate_text(request: TextEvaluationRequest):
289
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
290
 
291
  elif MODEL == "gte-large":
292
- model = gteModelLarge.from_pretrained("ypesk/frugal-ai-EURECOM-gte-large-baseline")
293
  model = model.to(device)
294
  tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-large-en-v1.5')
295
 
 
181
  test_dataset = dataset["test"]
182
 
183
  if MODEL =="mlp":
184
+ model = ConspiracyClassification768.from_pretrained("ypesk/frugal-ai-EURECOM-mlp-768-fullset")
185
  model = model.to(device)
186
  emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
187
  batch_size = 6
 
205
  elif MODEL == "ct":
206
  model = CTBERT.from_pretrained("ypesk/frugal-ai-EURECOM-ct-bert-baseline")
207
  model = model.to(device)
208
+ tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert-fullset')
209
 
210
  test_texts = [t['quote'] for t in test_dataset]
211
 
 
225
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
226
 
227
  elif MODEL == "modern-base":
228
+ model = conspiracyModelBase.from_pretrained("ypesk/frugal-ai-EURECOM-modern-base-fullset")
229
  model = model.to(device)
230
  tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
231
 
 
246
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
247
 
248
  elif MODEL == "modern-large":
249
+ model = conspiracyModelLarge.from_pretrained('ypesk/frugal-ai-EURECOM-modern-large-fullset')
250
  model = model.to(device)
251
  tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-large")
252
 
 
267
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
268
 
269
  elif MODEL == "gte-base":
270
+ model = gteModel.from_pretrained("ypesk/frugal-ai-EURECOM-gte-base-fullset")
271
  model = model.to(device)
272
  tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5')
273
 
 
289
  test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
290
 
291
  elif MODEL == "gte-large":
292
+ model = gteModelLarge.from_pretrained("ypesk/frugal-ai-EURECOM-gte-large-fullset")
293
  model = model.to(device)
294
  tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-large-en-v1.5')
295