File size: 4,819 Bytes
66477c5
 
 
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04527c3
 
94877c9
04527c3
 
94877c9
04527c3
 
66477c5
 
 
04527c3
94877c9
04527c3
94877c9
04527c3
 
 
94877c9
04527c3
 
 
 
94877c9
 
04527c3
 
 
 
 
 
 
d43c8a7
 
04527c3
 
 
 
94877c9
04527c3
 
 
 
94877c9
04527c3
66477c5
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
 
04527c3
66477c5
 
 
 
 
 
 
04527c3
66477c5
 
 
04527c3
66477c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94877c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
body {
    font-family: Arial, sans-serif;
    background-color: #343536;  /* Dark background */
    margin: 0;
    padding: 0;
    color: #bdc2c7;  /* Light text color */
}

#col-container {
    margin: 0 auto;
    max-width: 640px;
    padding: 20px;
    background-color: #4a4c4d;  /* Slightly lighter dark for the container */
    border-radius: 8px;
    box-shadow: 0 2px 10px rgba(0, 0, 0, 0.5);
}

h1 {
    color: #bdc2c7;  /* Light text color for headings */
    text-align: center;
}

button {
    background-color: #bdc2c7;  /* Light button color */
    color: #343536;  /* Dark text color for buttons */
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    cursor: pointer;
}

button:hover {
    background-color: #343536;  /* Dark background on hover */
    color: #bdc2c7;  /* Light text color on hover */
}

.slider {
    margin: 10px 0;
    background-color: #4a4c4d;  /* Dark background for sliders */
}

.gr-image {
    margin-top: 20px;
    border: 1px solid #bdc2c7;  /* Light border for images */
    border-radius: 5px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<h1>Pixel Phraser</h1>")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
                interactive=True,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,
                )

        gr.Examples(examples=examples, inputs=[prompt])
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()