Spaces:
Sleeping
Sleeping
File size: 4,819 Bytes
66477c5 04527c3 66477c5 04527c3 94877c9 04527c3 94877c9 04527c3 66477c5 04527c3 94877c9 04527c3 94877c9 04527c3 94877c9 04527c3 94877c9 04527c3 d43c8a7 04527c3 94877c9 04527c3 94877c9 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 04527c3 66477c5 94877c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
body {
font-family: Arial, sans-serif;
background-color: #343536; /* Dark background */
margin: 0;
padding: 0;
color: #bdc2c7; /* Light text color */
}
#col-container {
margin: 0 auto;
max-width: 640px;
padding: 20px;
background-color: #4a4c4d; /* Slightly lighter dark for the container */
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.5);
}
h1 {
color: #bdc2c7; /* Light text color for headings */
text-align: center;
}
button {
background-color: #bdc2c7; /* Light button color */
color: #343536; /* Dark text color for buttons */
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #343536; /* Dark background on hover */
color: #bdc2c7; /* Light text color on hover */
}
.slider {
margin: 10px 0;
background-color: #4a4c4d; /* Dark background for sliders */
}
.gr-image {
margin-top: 20px;
border: 1px solid #bdc2c7; /* Light border for images */
border-radius: 5px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1>Pixel Phraser</h1>")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
interactive=True,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|