File size: 25,447 Bytes
8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 8ebb9ec d93bc17 ef88ddc d93bc17 97af528 d93bc17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
from copy import deepcopy
from typing import Sequence, Optional
import datasets
import evaluate
# TODO: Add BibTeX citation
_CITATION = """\
@misc{nereval,
title={{NER-Evaluation}: Named Entity Evaluation as in SemEval 2013 task 9.1},
url={https://github.com/davidsbatista/NER-Evaluation},
note={Software available from https://github.com/davidsbatista/NER-Evaluation},
author={Batista David},
year={2018},
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
ner-eval is a Python frame for sequence labeling evaluation. I twas used in SemEval 2013 task 9.1.
It supports exact match, partial match, spurious and other errors.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: List of List of predicted labels (Estimated targets as returned by a tagger)
references: List of List of reference labels (Ground truth (correct) target values)
tags: List of tags to evaluate. default: None
Returns:
'scores' dict. Summary of the scores for overall and each tag.
{
"overall": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.0,
"ent_type_recall": 0.0,
"ent_type_f1": 0,
"partial_precision": 0.0,
"partial_recall": 0.0,
"partial_f1": 0,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"ORG": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.0,
"ent_type_recall": 0.0,
"ent_type_f1": 0,
"partial_precision": 0.0,
"partial_recall": 0.0,
"partial_f1": 0,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"PER": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.0,
"ent_type_recall": 0.0,
"ent_type_f1": 0,
"partial_precision": 0.0,
"partial_recall": 0.0,
"partial_f1": 0,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"LOC": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.0,
"ent_type_recall": 0.0,
"ent_type_f1": 0,
"partial_precision": 0.0,
"partial_recall": 0.0,
"partial_f1": 0,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
}
Examples:
>>> my_new_module = evaluate.load("fschlatt/ner_eval")
>>> results = my_new_module.compute(
... references=[["B-LOC", "I-LOC", "I-LOC", "B-ORG", "I-ORG", "O", "B-PER", "I-PER", "I-PER", "O"]],
... predictions=[["B-LOC", "I-LOC", "O", "O", "B-ORG", "I-ORG", "O", "B-PER", "I-PER", "O"]]
... )
>>> print(results)
{
"overall": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 2 / 3,
"ent_type_recall": 2 / 3,
"ent_type_f1": 2 / 3,
"partial_precision": 1 / 3,
"partial_recall": 1 / 3,
"partial_f1": 1 / 3,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"ORG": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.0,
"ent_type_recall": 0.0,
"ent_type_f1": 0,
"partial_precision": 0.0,
"partial_recall": 0.0,
"partial_f1": 0,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"PER": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.5,
"ent_type_recall": 1.0,
"ent_type_f1": 2 / 3,
"partial_precision": 0.25,
"partial_recall": 0.5,
"partial_f1": 1 / 3,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
},
"LOC": {
"strict_precision": 0.0,
"strict_recall": 0.0,
"strict_f1": 0,
"ent_type_precision": 0.5,
"ent_type_recall": 1.0,
"ent_type_f1": 2 / 3,
"partial_precision": 0.25,
"partial_recall": 0.5,
"partial_f1": 1 / 3,
"exact_precision": 0.0,
"exact_recall": 0.0,
"exact_f1": 0,
}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NEREval(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
homepage="https://github.com/davidsbatista/NER-Evaluation",
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Sequence(
datasets.Value("string", id="label"), id="sequence"
),
"references": datasets.Sequence(
datasets.Value("string", id="label"), id="sequence"
),
}
),
# Additional links to the codebase or references
codebase_urls=["https://github.com/davidsbatista/NER-Evaluation"],
reference_urls=[
"https://github.com/davidsbatista/NER-Evaluation",
"https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/",
],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(
self,
predictions: Sequence[Sequence[str]],
references: Sequence[Sequence[str]],
tags: Optional[Sequence[str]] = None,
modes: Optional[Sequence[str]] = None,
):
if tags is None:
tags = list(parse_tags(predictions).union(parse_tags(references)))
evaluator = Evaluator(predictions, references, tags)
results, agg_results = evaluator.evaluate()
out = {"overall": parse_results(results, modes)}
for tag, tag_result in agg_results.items():
out = {**out, tag: parse_results(tag_result, modes)}
return out
def parse_results(results, modes: Optional[Sequence[str]] = None):
if modes is None:
modes = ["strict", "ent_type", "partial", "exact"]
out = {}
for mode in modes:
out[f"{mode}_precision"] = results[mode]["precision"]
out[f"{mode}_recall"] = results[mode]["recall"]
out[f"{mode}_f1"] = results[mode]["f1"]
return out
def parse_tags(tokens: Sequence[Sequence[str]]):
tags = set()
for seq in tokens:
for t in seq:
tags.add(t.split("-")[-1])
tags.discard("O")
return tags
Entity = namedtuple("Entity", "e_type start_offset end_offset")
class Evaluator:
def __init__(self, true, pred, tags):
""" """
if len(true) != len(pred):
raise ValueError("Number of predicted documents does not equal true")
self.true = true
self.pred = pred
self.tags = tags
# Setup dict into which metrics will be stored.
self.metrics_results = {
"correct": 0,
"incorrect": 0,
"partial": 0,
"missed": 0,
"spurious": 0,
"possible": 0,
"actual": 0,
"precision": 0,
"recall": 0,
"f1": 0,
}
# Copy results dict to cover the four schemes.
self.results = {
"strict": deepcopy(self.metrics_results),
"ent_type": deepcopy(self.metrics_results),
"partial": deepcopy(self.metrics_results),
"exact": deepcopy(self.metrics_results),
}
# Create an accumulator to store results
self.evaluation_agg_entities_type = {e: deepcopy(self.results) for e in tags}
def evaluate(self):
for true_ents, pred_ents in zip(self.true, self.pred):
# Check that the length of the true and predicted examples are the
# same. This must be checked here, because another error may not
# be thrown if the lengths do not match.
if len(true_ents) != len(pred_ents):
raise ValueError("Prediction length does not match true example length")
# Compute results for one message
tmp_results, tmp_agg_results = compute_metrics(
collect_named_entities(true_ents),
collect_named_entities(pred_ents),
self.tags,
)
# Cycle through each result and accumulate
# TODO: Combine these loops below:
for eval_schema in self.results:
for metric in self.results[eval_schema]:
self.results[eval_schema][metric] += tmp_results[eval_schema][
metric
]
# Calculate global precision and recall
self.results = compute_precision_recall_f1_wrapper(self.results)
# Aggregate results by entity type
for e_type in self.tags:
for eval_schema in tmp_agg_results[e_type]:
for metric in tmp_agg_results[e_type][eval_schema]:
self.evaluation_agg_entities_type[e_type][eval_schema][
metric
] += tmp_agg_results[e_type][eval_schema][metric]
# Calculate precision recall at the individual entity level
self.evaluation_agg_entities_type[
e_type
] = compute_precision_recall_f1_wrapper(
self.evaluation_agg_entities_type[e_type]
)
return self.results, self.evaluation_agg_entities_type
def collect_named_entities(tokens):
"""
Creates a list of Entity named-tuples, storing the entity type and the start and end
offsets of the entity.
:param tokens: a list of tags
:return: a list of Entity named-tuples
"""
named_entities = []
start_offset = None
end_offset = None
ent_type = None
for offset, token_tag in enumerate(tokens):
if token_tag == "O":
if ent_type is not None and start_offset is not None:
end_offset = offset - 1
named_entities.append(Entity(ent_type, start_offset, end_offset))
start_offset = None
end_offset = None
ent_type = None
elif ent_type is None:
ent_type = token_tag[2:]
start_offset = offset
elif ent_type != token_tag[2:] or (
ent_type == token_tag[2:] and token_tag[:1] == "B"
):
end_offset = offset - 1
named_entities.append(Entity(ent_type, start_offset, end_offset))
# start of a new entity
ent_type = token_tag[2:]
start_offset = offset
end_offset = None
# catches an entity that goes up until the last token
if ent_type is not None and start_offset is not None and end_offset is None:
named_entities.append(Entity(ent_type, start_offset, len(tokens) - 1))
return named_entities
def compute_metrics(true_named_entities, pred_named_entities, tags):
eval_metrics = {
"correct": 0,
"incorrect": 0,
"partial": 0,
"missed": 0,
"spurious": 0,
"precision": 0,
"recall": 0,
"f1": 0,
}
# overall results
evaluation = {
"strict": deepcopy(eval_metrics),
"ent_type": deepcopy(eval_metrics),
"partial": deepcopy(eval_metrics),
"exact": deepcopy(eval_metrics),
}
# results by entity type
evaluation_agg_entities_type = {e: deepcopy(evaluation) for e in tags}
# keep track of entities that overlapped
true_which_overlapped_with_pred = []
# Subset into only the tags that we are interested in.
# NOTE: we remove the tags we don't want from both the predicted and the
# true entities. This covers the two cases where mismatches can occur:
#
# 1) Where the model predicts a tag that is not present in the true data
# 2) Where there is a tag in the true data that the model is not capable of
# predicting.
true_named_entities = [ent for ent in true_named_entities if ent.e_type in tags]
pred_named_entities = [ent for ent in pred_named_entities if ent.e_type in tags]
# go through each predicted named-entity
for pred in pred_named_entities:
found_overlap = False
# Check each of the potential scenarios in turn. See
# http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
# for scenario explanation.
# Scenario I: Exact match between true and pred
if pred in true_named_entities:
true_which_overlapped_with_pred.append(pred)
evaluation["strict"]["correct"] += 1
evaluation["ent_type"]["correct"] += 1
evaluation["exact"]["correct"] += 1
evaluation["partial"]["correct"] += 1
# for the agg. by e_type results
evaluation_agg_entities_type[pred.e_type]["strict"]["correct"] += 1
evaluation_agg_entities_type[pred.e_type]["ent_type"]["correct"] += 1
evaluation_agg_entities_type[pred.e_type]["exact"]["correct"] += 1
evaluation_agg_entities_type[pred.e_type]["partial"]["correct"] += 1
else:
# check for overlaps with any of the true entities
for true in true_named_entities:
pred_range = range(pred.start_offset, pred.end_offset)
true_range = range(true.start_offset, true.end_offset)
# Scenario IV: Offsets match, but entity type is wrong
if (
true.start_offset == pred.start_offset
and pred.end_offset == true.end_offset
and true.e_type != pred.e_type
):
# overall results
evaluation["strict"]["incorrect"] += 1
evaluation["ent_type"]["incorrect"] += 1
evaluation["partial"]["correct"] += 1
evaluation["exact"]["correct"] += 1
# aggregated by entity type results
evaluation_agg_entities_type[true.e_type]["strict"][
"incorrect"
] += 1
evaluation_agg_entities_type[true.e_type]["ent_type"][
"incorrect"
] += 1
evaluation_agg_entities_type[true.e_type]["partial"]["correct"] += 1
evaluation_agg_entities_type[true.e_type]["exact"]["correct"] += 1
true_which_overlapped_with_pred.append(true)
found_overlap = True
break
# check for an overlap i.e. not exact boundary match, with true entities
elif find_overlap(true_range, pred_range):
true_which_overlapped_with_pred.append(true)
# Scenario V: There is an overlap (but offsets do not match
# exactly), and the entity type is the same.
# 2.1 overlaps with the same entity type
if pred.e_type == true.e_type:
# overall results
evaluation["strict"]["incorrect"] += 1
evaluation["ent_type"]["correct"] += 1
evaluation["partial"]["partial"] += 1
evaluation["exact"]["incorrect"] += 1
# aggregated by entity type results
evaluation_agg_entities_type[true.e_type]["strict"][
"incorrect"
] += 1
evaluation_agg_entities_type[true.e_type]["ent_type"][
"correct"
] += 1
evaluation_agg_entities_type[true.e_type]["partial"][
"partial"
] += 1
evaluation_agg_entities_type[true.e_type]["exact"][
"incorrect"
] += 1
found_overlap = True
break
# Scenario VI: Entities overlap, but the entity type is
# different.
else:
# overall results
evaluation["strict"]["incorrect"] += 1
evaluation["ent_type"]["incorrect"] += 1
evaluation["partial"]["partial"] += 1
evaluation["exact"]["incorrect"] += 1
# aggregated by entity type results
# Results against the true entity
evaluation_agg_entities_type[true.e_type]["strict"][
"incorrect"
] += 1
evaluation_agg_entities_type[true.e_type]["partial"][
"partial"
] += 1
evaluation_agg_entities_type[true.e_type]["ent_type"][
"incorrect"
] += 1
evaluation_agg_entities_type[true.e_type]["exact"][
"incorrect"
] += 1
# Results against the predicted entity
# evaluation_agg_entities_type[pred.e_type]['strict']['spurious'] += 1
found_overlap = True
break
# Scenario II: Entities are spurious (i.e., over-generated).
if not found_overlap:
# Overall results
evaluation["strict"]["spurious"] += 1
evaluation["ent_type"]["spurious"] += 1
evaluation["partial"]["spurious"] += 1
evaluation["exact"]["spurious"] += 1
# Aggregated by entity type results
# NOTE: when pred.e_type is not found in tags
# or when it simply does not appear in the test set, then it is
# spurious, but it is not clear where to assign it at the tag
# level. In this case, it is applied to all target_tags
# found in this example. This will mean that the sum of the
# evaluation_agg_entities will not equal evaluation.
for true in tags:
evaluation_agg_entities_type[true]["strict"]["spurious"] += 1
evaluation_agg_entities_type[true]["ent_type"]["spurious"] += 1
evaluation_agg_entities_type[true]["partial"]["spurious"] += 1
evaluation_agg_entities_type[true]["exact"]["spurious"] += 1
# Scenario III: Entity was missed entirely.
for true in true_named_entities:
if true in true_which_overlapped_with_pred:
continue
else:
# overall results
evaluation["strict"]["missed"] += 1
evaluation["ent_type"]["missed"] += 1
evaluation["partial"]["missed"] += 1
evaluation["exact"]["missed"] += 1
# for the agg. by e_type
evaluation_agg_entities_type[true.e_type]["strict"]["missed"] += 1
evaluation_agg_entities_type[true.e_type]["ent_type"]["missed"] += 1
evaluation_agg_entities_type[true.e_type]["partial"]["missed"] += 1
evaluation_agg_entities_type[true.e_type]["exact"]["missed"] += 1
# Compute 'possible', 'actual' according to SemEval-2013 Task 9.1 on the
# overall results, and use these to calculate precision and recall.
for eval_type in evaluation:
evaluation[eval_type] = compute_actual_possible(evaluation[eval_type])
# Compute 'possible', 'actual', and precision and recall on entity level
# results. Start by cycling through the accumulated results.
for entity_type, entity_level in evaluation_agg_entities_type.items():
# Cycle through the evaluation types for each dict containing entity
# level results.
for eval_type in entity_level:
evaluation_agg_entities_type[entity_type][
eval_type
] = compute_actual_possible(entity_level[eval_type])
return evaluation, evaluation_agg_entities_type
def find_overlap(true_range, pred_range):
"""Find the overlap between two ranges
Find the overlap between two ranges. Return the overlapping values if
present, else return an empty set().
Examples:
>>> find_overlap((1, 2), (2, 3))
2
>>> find_overlap((1, 2), (3, 4))
set()
"""
true_set = set(true_range)
pred_set = set(pred_range)
overlaps = true_set.intersection(pred_set)
return overlaps
def compute_actual_possible(results):
"""
Takes a result dict that has been output by compute metrics.
Returns the results dict with actual, possible populated.
When the results dicts is from partial or ent_type metrics, then
partial_or_type=True to ensure the right calculation is used for
calculating precision and recall.
"""
correct = results["correct"]
incorrect = results["incorrect"]
partial = results["partial"]
missed = results["missed"]
spurious = results["spurious"]
# Possible: number annotations in the gold-standard which contribute to the
# final score
possible = correct + incorrect + partial + missed
# Actual: number of annotations produced by the NER system
actual = correct + incorrect + partial + spurious
results["actual"] = actual
results["possible"] = possible
return results
def compute_precision_recall_f1(results, partial_or_type=False):
"""
Takes a result dict that has been output by compute metrics.
Returns the results dict with precison and recall populated.
When the results dicts is from partial or ent_type metrics, then
partial_or_type=True to ensure the right calculation is used for
calculating precision and recall.
"""
actual = results["actual"]
possible = results["possible"]
partial = results["partial"]
correct = results["correct"]
if partial_or_type:
precision = (correct + 0.5 * partial) / actual if actual > 0 else 0
recall = (correct + 0.5 * partial) / possible if possible > 0 else 0
else:
precision = correct / actual if actual > 0 else 0
recall = correct / possible if possible > 0 else 0
results["precision"] = precision
results["recall"] = recall
results["f1"] = (
precision * recall * 2 / (precision + recall) if precision + recall > 0 else 0
)
return results
def compute_precision_recall_f1_wrapper(results):
"""
Wraps the compute_precision_recall_f1 function and runs on a dict of results
"""
results_a = {
key: compute_precision_recall_f1(value, True)
for key, value in results.items()
if key in ["partial", "ent_type"]
}
results_b = {
key: compute_precision_recall_f1(value)
for key, value in results.items()
if key in ["strict", "exact"]
}
results = {**results_a, **results_b}
return results
|