|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.neighbors import KNeighborsRegressor |
|
from geopy.distance import geodesic |
|
import googlemaps |
|
from geopy.exc import GeocoderTimedOut |
|
|
|
|
|
def knn_predict(df, target_column, features_columns, k=5): |
|
|
|
X = df[features_columns] |
|
y = df[target_column] |
|
|
|
|
|
knn = KNeighborsRegressor(n_neighbors=k) |
|
|
|
|
|
knn.fit(X, y) |
|
|
|
|
|
predictions = knn.predict(df[features_columns]) |
|
|
|
return predictions |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
@font-face {font-family: 'Quicksand'; |
|
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); |
|
|
|
} |
|
body { |
|
color: white; |
|
background-color: #1e1e1e; |
|
font-family: 'Quicksand', sans-serif; |
|
} |
|
.st-df-header, .st-df-body, .st-df-caption { |
|
color: #f8f9fa; /* Bootstrap table header text color */ |
|
} |
|
.st-eb { |
|
background-color: #343a40; /* Streamlit exception box background color */ |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
|
|
data = pd.read_excel('ven_fim_PEDÓ_nov_23.xlsx') |
|
|
|
|
|
radius_visible = True |
|
custom_address_initial = 'Centro, Lajeado - RS, Brazil' |
|
custom_lat = data['latitude'].median() |
|
custom_lon = data['longitude'].median() |
|
radius_in_meters = 1500 |
|
filtered_data = data |
|
|
|
|
|
zoom_level = 14 |
|
|
|
|
|
title_html = """ |
|
<style> |
|
@font-face {font-family: 'Quicksand'; |
|
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); |
|
} |
|
body {{ |
|
font-family: 'Quicksand', sans-serif; |
|
}} |
|
</style> |
|
<span style='color: gray; font-size: 50px;'>aval</span> |
|
<span style='color: white; font-size: 50px;'>ia</span> |
|
<span style='color: gray; font-size: 50px;'>.NEXUS</span> |
|
""" |
|
|
|
|
|
factor_html = """ |
|
<style> |
|
@font-face {font-family: 'Quicksand'; |
|
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); |
|
} |
|
body {{ |
|
font-family: 'Quicksand', sans-serif; |
|
}} |
|
</style> |
|
<a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR' target='_blank' style='text-decoration: none; color: inherit;'> |
|
<span style='color: gray; font-size: 20px;'>aval</span> |
|
<span style='color: white; font-size: 20px;'>ia</span> |
|
<span style='color: gray; font-size: 20px;'>.FACTOR</span> |
|
""" |
|
|
|
|
|
evo_html = """ |
|
<style> |
|
@font-face {font-family: 'Quicksand'; |
|
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); |
|
} |
|
body {{ |
|
font-family: 'Quicksand', sans-serif; |
|
}} |
|
</style> |
|
<a href='https://huggingface.co/spaces/DavidSB/avalia.EVO' target='_blank' style='text-decoration: none; color: inherit;'> |
|
<span style='color: gray; font-size: 20px;'>aval</span> |
|
<span style='color: white; font-size: 20px;'>ia</span> |
|
<span style='color: gray; font-size: 20px;'>.EVO</span> |
|
""" |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.sidebar.markdown(title_html, unsafe_allow_html=True) |
|
|
|
|
|
selected_tipo = st.selectbox('Filtrar por Tipo', data['Tipo'].unique()) |
|
|
|
data_tipo = data[data['Tipo'] == selected_tipo] |
|
|
|
custom_address = st.text_input('Informe o endereço', custom_address_initial) |
|
radius_visible = True |
|
|
|
|
|
gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') |
|
|
|
try: |
|
location = gmaps.geocode(custom_address)[0]['geometry']['location'] |
|
custom_lat, custom_lon = location['lat'], location['lng'] |
|
except (IndexError, GeocoderTimedOut): |
|
st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.") |
|
|
|
|
|
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level) |
|
|
|
|
|
if radius_visible: |
|
radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000) |
|
|
|
|
|
dorm_range = (int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max())) |
|
banho_range = (int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max())) |
|
vaga_range = (int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max())) |
|
|
|
|
|
atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1) |
|
apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1) |
|
|
|
if int(data_tipo['Dorm'].min()) != 0 and int(data_tipo['Dorm'].max()) != 0: |
|
dorm_range = st.slider('Dormitórios', int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max()), (int(data_tipo['Dorm'].min()), int(data_tipo['Dorm'].max())), step=1) |
|
if int(data_tipo['Banheiro'].min()) != 0 and int(data_tipo['Banheiro'].max()) != 0: |
|
banho_range = st.slider('Banheiros', int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max()), (int(data_tipo['Banheiro'].min()), int(data_tipo['Banheiro'].max())), step=1) |
|
if int(data_tipo['Vaga'].min()) != 0 and int(data_tipo['Vaga'].max()) != 0: |
|
vaga_range = st.slider('Vaga de estacionamento', int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max()), (int(data_tipo['Vaga'].min()), int(data_tipo['Vaga'].max())), step=1) |
|
|
|
|
|
elev_checkbox = False |
|
churr_checkbox = False |
|
esq_checkbox = False |
|
|
|
|
|
if int(data_tipo['Elevador'].min()) != 0 and int(data_tipo['Elevador'].max()) != 0: |
|
elev_checkbox = st.checkbox('Elevador') |
|
if int(data_tipo['Churrasq'].min()) != 0 and int(data_tipo['Churrasq'].max()) != 0: |
|
churr_checkbox = st.checkbox('Churrasqueira') |
|
if int(data_tipo['Lot_pos'].min()) != 0 and int(data_tipo['Lot_pos'].max()) != 0: |
|
esq_checkbox = st.checkbox('Duas ou mais frentes') |
|
|
|
|
|
elev_value = 1 if elev_checkbox else 0 |
|
churr_value = 1 if churr_checkbox else 0 |
|
esq_value = 1 if esq_checkbox else 0 |
|
|
|
data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) & |
|
(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1])) & |
|
(data_tipo['Dorm'].between(dorm_range[0], dorm_range[1])) & |
|
(data_tipo['Banheiro'].between(banho_range[0], banho_range[1])) & |
|
(data_tipo['Vaga'].between(vaga_range[0], vaga_range[1])) & |
|
(data_tipo['Elevador'] == elev_value) & |
|
(data_tipo['Churrasq'] == churr_value) & |
|
(data_tipo['Lot_pos'] == esq_value)] |
|
|
|
|
|
|
|
st.sidebar.markdown(factor_html, unsafe_allow_html=True) |
|
st.sidebar.markdown(evo_html, unsafe_allow_html=True) |
|
|
|
|
|
filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] |
|
filtered_data = filtered_data.dropna() |
|
|
|
|
|
st.markdown(f"""<style> |
|
.map {{ |
|
width: 100%; |
|
height: 100vh; |
|
}} |
|
</style>""", unsafe_allow_html=True) |
|
|
|
|
|
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal']) |
|
|
|
|
|
predicted_V_oferta = knn_predict(filtered_data, 'V_oferta', ['latitude', 'longitude', 'area_feature']) |
|
|
|
filtered_data['Predicted_V_oferta'] = predicted_V_oferta |
|
|
|
|
|
with st.container(): |
|
st.map(filtered_data, zoom=zoom_level, use_container_width=True) |
|
st.write("Dados:", filtered_data) |
|
|
|
|
|
if 'Predicted_V_oferta' in filtered_data.columns: |
|
st.write("Valores (R$/m²) previstos com algoritmo KNN:") |
|
st.write(filtered_data[['latitude', 'longitude', 'V_oferta', 'Predicted_V_oferta']]) |