Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,45 @@
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
|
5 |
-
# Load the model and tokenizer for
|
6 |
-
tokenizer =
|
7 |
-
model =
|
8 |
|
|
|
9 |
df = pd.read_csv('anomalies.csv')
|
10 |
-
df['Feedback'] = ""
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
df['ds'] = pd.to_datetime(df['ds']).dt.strftime('%Y-%m-%d') # Format the datetime values
|
14 |
-
df['real'] = df['real'].apply(lambda x: f"{x:.2f}") # Format the float values to two decimal places
|
15 |
-
|
16 |
-
# Convert each row into a structured natural language sentence
|
17 |
def tokenize_row(row):
|
18 |
return f"On {row['ds']}, the expense in the group '{row['Group']}' was ${row['real']}."
|
19 |
|
20 |
-
# Apply the tokenization function to each row
|
21 |
df['tokenized'] = df.apply(tokenize_row, axis=1)
|
22 |
print(df)
|
23 |
|
24 |
-
# Function to
|
25 |
-
def
|
26 |
if tokenizer.pad_token is None:
|
27 |
tokenizer.pad_token = tokenizer.eos_token
|
28 |
|
29 |
-
|
30 |
-
latest_entries = df['tokenized'].tail(10).tolist() # Limit to the last 10 entries for context
|
31 |
prompt = f"Based on the following data: {' '.join(latest_entries)} Question: {question} Answer:"
|
32 |
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
33 |
attention_mask = inputs['attention_mask']
|
34 |
input_ids = inputs['input_ids']
|
35 |
-
|
36 |
generated_ids = model.generate(
|
37 |
input_ids,
|
38 |
attention_mask=attention_mask,
|
39 |
-
max_length=
|
40 |
-
temperature=0.
|
41 |
top_p=0.9,
|
42 |
no_repeat_ngram_size=2
|
43 |
)
|
44 |
|
45 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
46 |
-
# Extract the response after "Answer:"
|
47 |
response_part = generated_text.split("Answer:")[1] if "Answer:" in generated_text else "No answer found."
|
48 |
final_response = response_part.split(".")[0] + "."
|
49 |
return final_response
|
@@ -70,7 +66,7 @@ with gr.Blocks() as demo:
|
|
70 |
feedback_result = gr.Textbox(label="Feedback Result", interactive=False)
|
71 |
submit_button = gr.Button("Submit Feedback")
|
72 |
|
73 |
-
ask_button.click(fn=
|
74 |
submit_button.click(fn=add_feedback, inputs=[name_input, feedback_input], outputs=feedback_result)
|
75 |
|
76 |
demo.launch()
|
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# Load the model and tokenizer for Meta LLaMA 3.1
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B")
|
8 |
|
9 |
+
# Load and preprocess the DataFrame
|
10 |
df = pd.read_csv('anomalies.csv')
|
11 |
+
df['Feedback'] = ""
|
12 |
+
df['ds'] = pd.to_datetime(df['ds']).dt.strftime('%Y-%m-%d')
|
13 |
+
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
14 |
|
15 |
+
# Convert data rows to sentences
|
|
|
|
|
|
|
|
|
16 |
def tokenize_row(row):
|
17 |
return f"On {row['ds']}, the expense in the group '{row['Group']}' was ${row['real']}."
|
18 |
|
|
|
19 |
df['tokenized'] = df.apply(tokenize_row, axis=1)
|
20 |
print(df)
|
21 |
|
22 |
+
# Function to generate a response based on the latest data entries
|
23 |
+
def answer_question_with_llama(question):
|
24 |
if tokenizer.pad_token is None:
|
25 |
tokenizer.pad_token = tokenizer.eos_token
|
26 |
|
27 |
+
latest_entries = df['tokenized'].tail(10).tolist()
|
|
|
28 |
prompt = f"Based on the following data: {' '.join(latest_entries)} Question: {question} Answer:"
|
29 |
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
30 |
attention_mask = inputs['attention_mask']
|
31 |
input_ids = inputs['input_ids']
|
32 |
+
|
33 |
generated_ids = model.generate(
|
34 |
input_ids,
|
35 |
attention_mask=attention_mask,
|
36 |
+
max_length=512, # Adjusted to match typical model capacity
|
37 |
+
temperature=0.7, # Adjust temperature for diversity
|
38 |
top_p=0.9,
|
39 |
no_repeat_ngram_size=2
|
40 |
)
|
41 |
|
42 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
|
43 |
response_part = generated_text.split("Answer:")[1] if "Answer:" in generated_text else "No answer found."
|
44 |
final_response = response_part.split(".")[0] + "."
|
45 |
return final_response
|
|
|
66 |
feedback_result = gr.Textbox(label="Feedback Result", interactive=False)
|
67 |
submit_button = gr.Button("Submit Feedback")
|
68 |
|
69 |
+
ask_button.click(fn=answer_question_with_llama, inputs=question_input, outputs=answer_output)
|
70 |
submit_button.click(fn=add_feedback, inputs=[name_input, feedback_input], outputs=feedback_result)
|
71 |
|
72 |
demo.launch()
|