Upload 24 files
Browse files- .gitattributes +35 -35
- .gitignore +5 -0
- README.md +12 -12
- aic-logo.png +0 -0
- app.py +181 -0
- ckpt/full.pkl +3 -0
- ckpt/high.pkl +3 -0
- configs/full.json +54 -0
- configs/high.json +54 -0
- logo.png +0 -0
- noisy_speech/EN_+0dB.wav +0 -0
- noisy_speech/EN_+3dB.wav +0 -0
- noisy_speech/EN_+6dB.wav +0 -0
- noisy_speech/EN_-3dB.wav +0 -0
- noisy_speech/EN_-6db.wav +0 -0
- noisy_speech/JA_+0dB.wav +0 -0
- noisy_speech/JA_+3dB.wav +0 -0
- noisy_speech/JA_+6dB.wav +0 -0
- noisy_speech/JA_-3dB.wav +0 -0
- noisy_speech/JA_-6dB.wav +0 -0
- requirements.txt +6 -0
- src/denoise.py +33 -0
- src/model.py +385 -0
- src/utils.py +223 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
process.ipynb
|
2 |
+
clean_speech/
|
3 |
+
noise/
|
4 |
+
__pycache__/
|
5 |
+
test.py
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title: Speech
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.36.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Speech Denoising
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.36.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
aic-logo.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
from io import BytesIO
|
7 |
+
import streamlit as st
|
8 |
+
from pydub import AudioSegment
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from scipy.io.wavfile import write
|
11 |
+
from src.denoise import denoise
|
12 |
+
from myrecorder import recorder
|
13 |
+
|
14 |
+
|
15 |
+
SR = 16000
|
16 |
+
CONTAINER_HEIGHT = 380
|
17 |
+
|
18 |
+
|
19 |
+
def np_audio_to_bytesio(np_audio, np_audio_sr):
|
20 |
+
_bytes = bytes()
|
21 |
+
byte_io = io.BytesIO(_bytes)
|
22 |
+
write(byte_io, np_audio_sr, np_audio)
|
23 |
+
bytes_audio = byte_io.read()
|
24 |
+
return bytes_audio
|
25 |
+
|
26 |
+
|
27 |
+
def autoplay_audio(audio: str):
|
28 |
+
audio_base64 = base64.b64encode(audio).decode('utf-8')
|
29 |
+
audio_tag = f'<audio autoplay="true" src="data:audio/wav;base64,{audio_base64}">'
|
30 |
+
st.markdown(audio_tag, unsafe_allow_html=True)
|
31 |
+
|
32 |
+
|
33 |
+
def load_noisy_speech(root=os.path.join(os.getcwd(), 'noisy_speech')):
|
34 |
+
noisy_speech_paths = {'EN':{}, 'JA': {}}
|
35 |
+
noisy_speech_names = os.listdir(root)
|
36 |
+
for name in noisy_speech_names:
|
37 |
+
splt = name.split('_')
|
38 |
+
lang, snr = splt[0].upper(), int(splt[1][:2])
|
39 |
+
noisy_speech_paths[lang][snr] = os.path.join(root, name)
|
40 |
+
|
41 |
+
en_keys = list(noisy_speech_paths['EN'].keys())
|
42 |
+
en_keys.sort()
|
43 |
+
en_keys.reverse()
|
44 |
+
noisy_speech_paths['EN'] = {f'{key}dB': noisy_speech_paths['EN'][key] for key in en_keys}
|
45 |
+
|
46 |
+
ja_keys = list(noisy_speech_paths['JA'].keys())
|
47 |
+
ja_keys.sort()
|
48 |
+
ja_keys.reverse()
|
49 |
+
noisy_speech_paths['JA'] = {f'{key}dB': noisy_speech_paths['JA'][key] for key in ja_keys}
|
50 |
+
|
51 |
+
return noisy_speech_paths
|
52 |
+
|
53 |
+
|
54 |
+
def load_wav(wav_path):
|
55 |
+
wav_22k, sr = librosa.load(wav_path)
|
56 |
+
wav_16k = librosa.resample(wav_22k, orig_sr=sr, target_sr=SR)
|
57 |
+
return wav_22k, wav_16k
|
58 |
+
|
59 |
+
|
60 |
+
def wav_to_spec(wav, sr):
|
61 |
+
if sr == 16000:
|
62 |
+
wav = librosa.resample(wav, orig_sr=sr, target_sr=22050)
|
63 |
+
spec = np.abs(librosa.stft(wav))
|
64 |
+
spec = librosa.amplitude_to_db(spec, ref=np.max)
|
65 |
+
return spec
|
66 |
+
|
67 |
+
|
68 |
+
def export_spec_to_buffer(spec):
|
69 |
+
plt.rcParams['figure.figsize'] = (16, 4.5)
|
70 |
+
plt.rc('axes', labelsize=15)
|
71 |
+
plt.rc('xtick', labelsize=15)
|
72 |
+
plt.rc('ytick', labelsize=15)
|
73 |
+
librosa.display.specshow(spec, y_axis='log', x_axis='time')
|
74 |
+
img_buffer = BytesIO()
|
75 |
+
plt.savefig(img_buffer, format='JPEG', bbox_inches='tight', pad_inches=0)
|
76 |
+
return img_buffer
|
77 |
+
|
78 |
+
|
79 |
+
def process_recorded_wav_bytes(wav_bytes, sr):
|
80 |
+
file = BytesIO(wav_bytes)
|
81 |
+
audio = AudioSegment.from_file(file=file, format='wav')
|
82 |
+
audio = audio.set_sample_width(2)
|
83 |
+
audio = audio.set_channels(1)
|
84 |
+
audio_22k = audio.set_frame_rate(sr)
|
85 |
+
audio_16k = audio.set_frame_rate(SR)
|
86 |
+
audio_22k = np.array(audio_22k.get_array_of_samples(), dtype=np.float32)
|
87 |
+
audio_16k = np.array(audio_16k.get_array_of_samples(), dtype=np.float32)
|
88 |
+
return audio_22k, audio_16k
|
89 |
+
|
90 |
+
|
91 |
+
def main():
|
92 |
+
|
93 |
+
st.set_page_config(
|
94 |
+
page_title="speech-denoising-app",
|
95 |
+
layout="wide"
|
96 |
+
)
|
97 |
+
|
98 |
+
logo_space, title_space, _ = st.columns([1, 5, 1], gap="small")
|
99 |
+
|
100 |
+
with logo_space:
|
101 |
+
st.write(
|
102 |
+
"""
|
103 |
+
<div style="display: flex; justify-content: left;">
|
104 |
+
<b><span style="text-align: center; color: #101414; font-size: 14px">FPT Corporation</span></b>
|
105 |
+
</div>
|
106 |
+
""",
|
107 |
+
unsafe_allow_html=True
|
108 |
+
)
|
109 |
+
st.image('aic-logo.png')
|
110 |
+
|
111 |
+
with title_space:
|
112 |
+
st.image('logo.png')
|
113 |
+
|
114 |
+
noisy_speech_files = load_noisy_speech()
|
115 |
+
|
116 |
+
input_space, output_space = st.columns([1, 1], gap="medium")
|
117 |
+
_, record_space, _, compute_space= st.columns([0.7, 1, 1, 1], gap="small")
|
118 |
+
|
119 |
+
with record_space:
|
120 |
+
record = recorder(
|
121 |
+
start_prompt="Start Recording",
|
122 |
+
stop_prompt="Stop Recording",
|
123 |
+
just_once=False,
|
124 |
+
use_container_width=False,
|
125 |
+
format="wav",
|
126 |
+
callback=None,
|
127 |
+
args=(),
|
128 |
+
kwargs={},
|
129 |
+
key=None
|
130 |
+
)
|
131 |
+
|
132 |
+
with compute_space:
|
133 |
+
compute = st.button('Denoise')
|
134 |
+
|
135 |
+
with input_space.container(height=CONTAINER_HEIGHT, border=True):
|
136 |
+
lang_select_space, snr_select_space = st.columns([1, 1], gap="small")
|
137 |
+
with lang_select_space:
|
138 |
+
language_select = st.selectbox("Language", list(noisy_speech_files.keys()))
|
139 |
+
with snr_select_space:
|
140 |
+
if language_select:
|
141 |
+
snr_select = st.selectbox("SNR Level", list(noisy_speech_files[language_select].keys()))
|
142 |
+
|
143 |
+
if record:
|
144 |
+
wav_bytes_record = record['bytes']
|
145 |
+
sr = record['sample_rate']
|
146 |
+
noisy_wav_22k, noisy_wav = process_recorded_wav_bytes(wav_bytes_record, sr=22050)
|
147 |
+
noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
|
148 |
+
noisy_spec_buff = export_spec_to_buffer(noisy_spec)
|
149 |
+
|
150 |
+
st.audio(wav_bytes_record, format="wav")
|
151 |
+
st.image(image=noisy_spec_buff)
|
152 |
+
|
153 |
+
elif language_select and snr_select:
|
154 |
+
audio_path = noisy_speech_files[language_select][snr_select]
|
155 |
+
noisy_wav_22k, noisy_wav = load_wav(audio_path)
|
156 |
+
noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
|
157 |
+
noisy_spec_buff = export_spec_to_buffer(noisy_spec)
|
158 |
+
|
159 |
+
st.audio(audio_path, format="wav")
|
160 |
+
st.image(image=noisy_spec_buff)
|
161 |
+
|
162 |
+
with output_space.container(height=CONTAINER_HEIGHT, border=True):
|
163 |
+
st.write(
|
164 |
+
"""
|
165 |
+
<div style="display: flex; justify-content: center;">
|
166 |
+
<b><span style="text-align: center; color: #808080; font-size: 51.5px">Output</span></b>
|
167 |
+
</div>
|
168 |
+
""",
|
169 |
+
unsafe_allow_html=True
|
170 |
+
)
|
171 |
+
if noisy_wav.any() and compute:
|
172 |
+
denoised_wav = denoise(noisy_wav)
|
173 |
+
st.audio(denoised_wav, sample_rate=SR, format="audio/wav")
|
174 |
+
denoised_spec = wav_to_spec(denoised_wav, sr=SR)
|
175 |
+
denoised_spec_buff = export_spec_to_buffer(denoised_spec)
|
176 |
+
st.image(image=denoised_spec_buff)
|
177 |
+
record = None
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == '__main__':
|
181 |
+
main()
|
ckpt/full.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:145c101eb5bbfa3ba52fb2b4ec7e5b64a361c102f89291f75e1dd42601d95dc9
|
3 |
+
size 184336765
|
ckpt/high.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513d9e4f69483bf2bcc3059dd6b3644140763bf3f22df41d7ee366cc2cbd1829
|
3 |
+
size 184336765
|
configs/full.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"network_config": {
|
3 |
+
"channels_input": 1,
|
4 |
+
"channels_output": 1,
|
5 |
+
"channels_H": 64,
|
6 |
+
"max_H": 768,
|
7 |
+
"encoder_n_layers": 8,
|
8 |
+
"kernel_size": 4,
|
9 |
+
"stride": 2,
|
10 |
+
"tsfm_n_layers": 5,
|
11 |
+
"tsfm_n_head": 8,
|
12 |
+
"tsfm_d_model": 512,
|
13 |
+
"tsfm_d_inner": 2048
|
14 |
+
},
|
15 |
+
"train_config": {
|
16 |
+
"exp_path": "DNS-large-full",
|
17 |
+
"log":{
|
18 |
+
"directory": "./exp",
|
19 |
+
"ckpt_iter": "max",
|
20 |
+
"iters_per_ckpt": 10000,
|
21 |
+
"iters_per_valid": 500
|
22 |
+
},
|
23 |
+
"optimization":{
|
24 |
+
"n_iters": 250000,
|
25 |
+
"learning_rate": 2e-4,
|
26 |
+
"batch_size_per_gpu": 8
|
27 |
+
},
|
28 |
+
"loss_config":{
|
29 |
+
"ell_p": 1,
|
30 |
+
"ell_p_lambda": 1,
|
31 |
+
"stft_lambda": 1,
|
32 |
+
"stft_config":{
|
33 |
+
"sc_lambda": 0.5,
|
34 |
+
"mag_lambda": 0.5,
|
35 |
+
"band": "full",
|
36 |
+
"hop_sizes": [50, 120, 240],
|
37 |
+
"win_lengths": [240, 600, 1200],
|
38 |
+
"fft_sizes": [512, 1024, 2048]
|
39 |
+
}
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"trainset_config": {
|
43 |
+
"root": "./dns",
|
44 |
+
"crop_length_sec": 10,
|
45 |
+
"sample_rate": 16000
|
46 |
+
},
|
47 |
+
"gen_config":{
|
48 |
+
"output_directory": "./exp"
|
49 |
+
},
|
50 |
+
"dist_config": {
|
51 |
+
"dist_backend": "nccl",
|
52 |
+
"dist_url": "tcp://localhost:54321"
|
53 |
+
}
|
54 |
+
}
|
configs/high.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"network_config": {
|
3 |
+
"channels_input": 1,
|
4 |
+
"channels_output": 1,
|
5 |
+
"channels_H": 64,
|
6 |
+
"max_H": 768,
|
7 |
+
"encoder_n_layers": 8,
|
8 |
+
"kernel_size": 4,
|
9 |
+
"stride": 2,
|
10 |
+
"tsfm_n_layers": 5,
|
11 |
+
"tsfm_n_head": 8,
|
12 |
+
"tsfm_d_model": 512,
|
13 |
+
"tsfm_d_inner": 2048
|
14 |
+
},
|
15 |
+
"train_config": {
|
16 |
+
"exp_path": "DNS-large-high",
|
17 |
+
"log":{
|
18 |
+
"directory": "./exp",
|
19 |
+
"ckpt_iter": "max",
|
20 |
+
"iters_per_ckpt": 10000,
|
21 |
+
"iters_per_valid": 500
|
22 |
+
},
|
23 |
+
"optimization":{
|
24 |
+
"n_iters": 250000,
|
25 |
+
"learning_rate": 2e-4,
|
26 |
+
"batch_size_per_gpu": 8
|
27 |
+
},
|
28 |
+
"loss_config":{
|
29 |
+
"ell_p": 1,
|
30 |
+
"ell_p_lambda": 1,
|
31 |
+
"stft_lambda": 1,
|
32 |
+
"stft_config":{
|
33 |
+
"sc_lambda": 0.5,
|
34 |
+
"mag_lambda": 0.5,
|
35 |
+
"band": "high",
|
36 |
+
"hop_sizes": [50, 120, 240],
|
37 |
+
"win_lengths": [240, 600, 1200],
|
38 |
+
"fft_sizes": [512, 1024, 2048]
|
39 |
+
}
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"trainset_config": {
|
43 |
+
"root": "./dns",
|
44 |
+
"crop_length_sec": 10,
|
45 |
+
"sample_rate": 16000
|
46 |
+
},
|
47 |
+
"gen_config":{
|
48 |
+
"output_directory": "./exp"
|
49 |
+
},
|
50 |
+
"dist_config": {
|
51 |
+
"dist_backend": "nccl",
|
52 |
+
"dist_url": "tcp://localhost:54321"
|
53 |
+
}
|
54 |
+
}
|
logo.png
ADDED
![]() |
noisy_speech/EN_+0dB.wav
ADDED
Binary file (618 kB). View file
|
|
noisy_speech/EN_+3dB.wav
ADDED
Binary file (494 kB). View file
|
|
noisy_speech/EN_+6dB.wav
ADDED
Binary file (444 kB). View file
|
|
noisy_speech/EN_-3dB.wav
ADDED
Binary file (613 kB). View file
|
|
noisy_speech/EN_-6db.wav
ADDED
Binary file (489 kB). View file
|
|
noisy_speech/JA_+0dB.wav
ADDED
Binary file (693 kB). View file
|
|
noisy_speech/JA_+3dB.wav
ADDED
Binary file (652 kB). View file
|
|
noisy_speech/JA_+6dB.wav
ADDED
Binary file (530 kB). View file
|
|
noisy_speech/JA_-3dB.wav
ADDED
Binary file (719 kB). View file
|
|
noisy_speech/JA_-6dB.wav
ADDED
Binary file (833 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy <= 1.25
|
2 |
+
streamlit
|
3 |
+
scipy
|
4 |
+
myrecorder
|
5 |
+
librosa
|
6 |
+
torch
|
src/denoise.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
random.seed(0)
|
6 |
+
torch.manual_seed(0)
|
7 |
+
import numpy as np
|
8 |
+
np.random.seed(0)
|
9 |
+
from src.model import DenoisingModel
|
10 |
+
|
11 |
+
|
12 |
+
def denoise(
|
13 |
+
wav: np.ndarray,
|
14 |
+
ckpt_path: str = os.path.join(os.getcwd(), 'ckpt', 'full.pkl'),
|
15 |
+
cfg_path: str = os.path.join(os.getcwd(), 'configs', 'full.json'),
|
16 |
+
):
|
17 |
+
|
18 |
+
with open(cfg_path) as f:
|
19 |
+
data = f.read()
|
20 |
+
config = json.loads(data)
|
21 |
+
|
22 |
+
net = DenoisingModel(**config['network_config']).to('cpu')
|
23 |
+
|
24 |
+
# load checkpoint
|
25 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
26 |
+
net.load_state_dict(checkpoint['model_state_dict'])
|
27 |
+
net.eval()
|
28 |
+
|
29 |
+
# inference
|
30 |
+
wav = torch.from_numpy(wav).unsqueeze(0)
|
31 |
+
wav_denoised = net(wav).squeeze(0).detach().numpy().reshape(-1)
|
32 |
+
|
33 |
+
return wav_denoised
|
src/model.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from src.utils import weight_scaling_init
|
11 |
+
|
12 |
+
|
13 |
+
# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch
|
14 |
+
# Original Copyright 2017 Victor Huang
|
15 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
16 |
+
|
17 |
+
class ScaledDotProductAttention(nn.Module):
|
18 |
+
''' Scaled Dot-Product Attention '''
|
19 |
+
|
20 |
+
def __init__(self, temperature, attn_dropout=0.1):
|
21 |
+
super().__init__()
|
22 |
+
self.temperature = temperature
|
23 |
+
self.dropout = nn.Dropout(attn_dropout)
|
24 |
+
|
25 |
+
def forward(self, q, k, v, mask=None):
|
26 |
+
|
27 |
+
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
28 |
+
|
29 |
+
if mask is not None:
|
30 |
+
attn = attn.masked_fill(mask == 0, -1e9)
|
31 |
+
|
32 |
+
attn = self.dropout(F.softmax(attn, dim=-1))
|
33 |
+
output = torch.matmul(attn, v)
|
34 |
+
|
35 |
+
return output, attn
|
36 |
+
|
37 |
+
|
38 |
+
class MultiHeadAttention(nn.Module):
|
39 |
+
''' Multi-Head Attention module '''
|
40 |
+
|
41 |
+
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.n_head = n_head
|
45 |
+
self.d_k = d_k
|
46 |
+
self.d_v = d_v
|
47 |
+
|
48 |
+
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
49 |
+
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
50 |
+
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
51 |
+
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
52 |
+
|
53 |
+
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
54 |
+
|
55 |
+
self.dropout = nn.Dropout(dropout)
|
56 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
57 |
+
|
58 |
+
|
59 |
+
def forward(self, q, k, v, mask=None):
|
60 |
+
|
61 |
+
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
62 |
+
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
63 |
+
|
64 |
+
residual = q
|
65 |
+
|
66 |
+
# Pass through the pre-attention projection: b x lq x (n*dv)
|
67 |
+
# Separate different heads: b x lq x n x dv
|
68 |
+
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
69 |
+
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
70 |
+
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
71 |
+
|
72 |
+
# Transpose for attention dot product: b x n x lq x dv
|
73 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
74 |
+
|
75 |
+
if mask is not None:
|
76 |
+
mask = mask.unsqueeze(1) # For head axis broadcasting.
|
77 |
+
|
78 |
+
q, attn = self.attention(q, k, v, mask=mask)
|
79 |
+
|
80 |
+
# Transpose to move the head dimension back: b x lq x n x dv
|
81 |
+
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
|
82 |
+
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
83 |
+
q = self.dropout(self.fc(q))
|
84 |
+
q += residual
|
85 |
+
|
86 |
+
q = self.layer_norm(q)
|
87 |
+
|
88 |
+
return q, attn
|
89 |
+
|
90 |
+
|
91 |
+
class PositionwiseFeedForward(nn.Module):
|
92 |
+
''' A two-feed-forward-layer module '''
|
93 |
+
|
94 |
+
def __init__(self, d_in, d_hid, dropout=0.1):
|
95 |
+
super().__init__()
|
96 |
+
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
|
97 |
+
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
|
98 |
+
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
|
99 |
+
self.dropout = nn.Dropout(dropout)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
|
103 |
+
residual = x
|
104 |
+
|
105 |
+
x = self.w_2(F.relu(self.w_1(x)))
|
106 |
+
x = self.dropout(x)
|
107 |
+
x += residual
|
108 |
+
|
109 |
+
x = self.layer_norm(x)
|
110 |
+
|
111 |
+
return x
|
112 |
+
|
113 |
+
|
114 |
+
def get_subsequent_mask(seq):
|
115 |
+
''' For masking out the subsequent info. '''
|
116 |
+
sz_b, len_s = seq.size()
|
117 |
+
subsequent_mask = (1 - torch.triu(
|
118 |
+
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
|
119 |
+
return subsequent_mask
|
120 |
+
|
121 |
+
|
122 |
+
class PositionalEncoding(nn.Module):
|
123 |
+
|
124 |
+
def __init__(self, d_hid, n_position=200):
|
125 |
+
super(PositionalEncoding, self).__init__()
|
126 |
+
|
127 |
+
# Not a parameter
|
128 |
+
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
|
129 |
+
|
130 |
+
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
131 |
+
''' Sinusoid position encoding table '''
|
132 |
+
# TODO: make it with torch instead of numpy
|
133 |
+
|
134 |
+
def get_position_angle_vec(position):
|
135 |
+
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
136 |
+
|
137 |
+
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
138 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
139 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
140 |
+
|
141 |
+
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
return x + self.pos_table[:, :x.size(1)].clone().detach()
|
145 |
+
|
146 |
+
|
147 |
+
class EncoderLayer(nn.Module):
|
148 |
+
''' Compose with two layers '''
|
149 |
+
|
150 |
+
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
|
151 |
+
super(EncoderLayer, self).__init__()
|
152 |
+
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
|
153 |
+
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
|
154 |
+
|
155 |
+
def forward(self, enc_input, slf_attn_mask=None):
|
156 |
+
enc_output, enc_slf_attn = self.slf_attn(
|
157 |
+
enc_input, enc_input, enc_input, mask=slf_attn_mask)
|
158 |
+
enc_output = self.pos_ffn(enc_output)
|
159 |
+
return enc_output, enc_slf_attn
|
160 |
+
|
161 |
+
|
162 |
+
class TransformerEncoder(nn.Module):
|
163 |
+
''' A encoder model with self attention mechanism. '''
|
164 |
+
|
165 |
+
def __init__(
|
166 |
+
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
|
167 |
+
d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False):
|
168 |
+
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
# self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
|
172 |
+
if n_position > 0:
|
173 |
+
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
|
174 |
+
else:
|
175 |
+
self.position_enc = lambda x: x
|
176 |
+
self.dropout = nn.Dropout(p=dropout)
|
177 |
+
self.layer_stack = nn.ModuleList([
|
178 |
+
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
|
179 |
+
for _ in range(n_layers)])
|
180 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
181 |
+
self.scale_emb = scale_emb
|
182 |
+
self.d_model = d_model
|
183 |
+
|
184 |
+
def forward(self, src_seq, src_mask, return_attns=False):
|
185 |
+
|
186 |
+
enc_slf_attn_list = []
|
187 |
+
|
188 |
+
# -- Forward
|
189 |
+
# enc_output = self.src_word_emb(src_seq)
|
190 |
+
enc_output = src_seq
|
191 |
+
if self.scale_emb:
|
192 |
+
enc_output *= self.d_model ** 0.5
|
193 |
+
enc_output = self.dropout(self.position_enc(enc_output))
|
194 |
+
enc_output = self.layer_norm(enc_output)
|
195 |
+
|
196 |
+
for enc_layer in self.layer_stack:
|
197 |
+
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
|
198 |
+
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
|
199 |
+
|
200 |
+
if return_attns:
|
201 |
+
return enc_output, enc_slf_attn_list
|
202 |
+
return enc_output
|
203 |
+
|
204 |
+
|
205 |
+
# CleanUNet architecture
|
206 |
+
|
207 |
+
|
208 |
+
def padding(x, D, K, S):
|
209 |
+
"""padding zeroes to x so that denoised audio has the same length"""
|
210 |
+
|
211 |
+
L = x.shape[-1]
|
212 |
+
for _ in range(D):
|
213 |
+
if L < K:
|
214 |
+
L = 1
|
215 |
+
else:
|
216 |
+
L = 1 + np.ceil((L - K) / S)
|
217 |
+
|
218 |
+
for _ in range(D):
|
219 |
+
L = (L - 1) * S + K
|
220 |
+
|
221 |
+
L = int(L)
|
222 |
+
x = F.pad(x, (0, L - x.shape[-1]))
|
223 |
+
return x
|
224 |
+
|
225 |
+
|
226 |
+
class DenoisingModel(nn.Module):
|
227 |
+
""" CleanUNet architecture. """
|
228 |
+
|
229 |
+
def __init__(self, channels_input=1, channels_output=1,
|
230 |
+
channels_H=64, max_H=768,
|
231 |
+
encoder_n_layers=8, kernel_size=4, stride=2,
|
232 |
+
tsfm_n_layers=3,
|
233 |
+
tsfm_n_head=8,
|
234 |
+
tsfm_d_model=512,
|
235 |
+
tsfm_d_inner=2048):
|
236 |
+
|
237 |
+
"""
|
238 |
+
Parameters:
|
239 |
+
channels_input (int): input channels
|
240 |
+
channels_output (int): output channels
|
241 |
+
channels_H (int): middle channels H that controls capacity
|
242 |
+
max_H (int): maximum H
|
243 |
+
encoder_n_layers (int): number of encoder/decoder layers D
|
244 |
+
kernel_size (int): kernel size K
|
245 |
+
stride (int): stride S
|
246 |
+
tsfm_n_layers (int): number of self attention blocks N
|
247 |
+
tsfm_n_head (int): number of heads in each self attention block
|
248 |
+
tsfm_d_model (int): d_model of self attention
|
249 |
+
tsfm_d_inner (int): d_inner of self attention
|
250 |
+
"""
|
251 |
+
|
252 |
+
super(DenoisingModel, self).__init__()
|
253 |
+
|
254 |
+
self.channels_input = channels_input
|
255 |
+
self.channels_output = channels_output
|
256 |
+
self.channels_H = channels_H
|
257 |
+
self.max_H = max_H
|
258 |
+
self.encoder_n_layers = encoder_n_layers
|
259 |
+
self.kernel_size = kernel_size
|
260 |
+
self.stride = stride
|
261 |
+
|
262 |
+
self.tsfm_n_layers = tsfm_n_layers
|
263 |
+
self.tsfm_n_head = tsfm_n_head
|
264 |
+
self.tsfm_d_model = tsfm_d_model
|
265 |
+
self.tsfm_d_inner = tsfm_d_inner
|
266 |
+
|
267 |
+
# encoder and decoder
|
268 |
+
self.encoder = nn.ModuleList()
|
269 |
+
self.decoder = nn.ModuleList()
|
270 |
+
|
271 |
+
for i in range(encoder_n_layers):
|
272 |
+
self.encoder.append(nn.Sequential(
|
273 |
+
nn.Conv1d(channels_input, channels_H, kernel_size, stride),
|
274 |
+
nn.ReLU(),
|
275 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
276 |
+
nn.GLU(dim=1)
|
277 |
+
))
|
278 |
+
channels_input = channels_H
|
279 |
+
|
280 |
+
if i == 0:
|
281 |
+
# no relu at end
|
282 |
+
self.decoder.append(nn.Sequential(
|
283 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
284 |
+
nn.GLU(dim=1),
|
285 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride)
|
286 |
+
))
|
287 |
+
else:
|
288 |
+
self.decoder.insert(0, nn.Sequential(
|
289 |
+
nn.Conv1d(channels_H, channels_H * 2, 1),
|
290 |
+
nn.GLU(dim=1),
|
291 |
+
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride),
|
292 |
+
nn.ReLU()
|
293 |
+
))
|
294 |
+
channels_output = channels_H
|
295 |
+
|
296 |
+
# double H but keep below max_H
|
297 |
+
channels_H *= 2
|
298 |
+
channels_H = min(channels_H, max_H)
|
299 |
+
|
300 |
+
# self attention block
|
301 |
+
self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1)
|
302 |
+
self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model,
|
303 |
+
n_layers=tsfm_n_layers,
|
304 |
+
n_head=tsfm_n_head,
|
305 |
+
d_k=tsfm_d_model // tsfm_n_head,
|
306 |
+
d_v=tsfm_d_model // tsfm_n_head,
|
307 |
+
d_model=tsfm_d_model,
|
308 |
+
d_inner=tsfm_d_inner,
|
309 |
+
dropout=0.0,
|
310 |
+
n_position=0,
|
311 |
+
scale_emb=False)
|
312 |
+
self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1)
|
313 |
+
|
314 |
+
# weight scaling initialization
|
315 |
+
for layer in self.modules():
|
316 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
317 |
+
weight_scaling_init(layer)
|
318 |
+
|
319 |
+
def forward(self, noisy_audio):
|
320 |
+
# (B, L) -> (B, C, L)
|
321 |
+
if len(noisy_audio.shape) == 2:
|
322 |
+
noisy_audio = noisy_audio.unsqueeze(1)
|
323 |
+
B, C, L = noisy_audio.shape
|
324 |
+
assert C == 1
|
325 |
+
|
326 |
+
# normalization and padding
|
327 |
+
std = noisy_audio.std(dim=2, keepdim=True) + 1e-3
|
328 |
+
noisy_audio /= std
|
329 |
+
x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride)
|
330 |
+
|
331 |
+
# encoder
|
332 |
+
skip_connections = []
|
333 |
+
for downsampling_block in self.encoder:
|
334 |
+
x = downsampling_block(x)
|
335 |
+
skip_connections.append(x)
|
336 |
+
skip_connections = skip_connections[::-1]
|
337 |
+
|
338 |
+
# attention mask for causal inference; for non-causal, set attn_mask to None
|
339 |
+
len_s = x.shape[-1] # length at bottleneck
|
340 |
+
attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool()
|
341 |
+
|
342 |
+
x = self.tsfm_conv1(x) # C 1024 -> 512
|
343 |
+
x = x.permute(0, 2, 1)
|
344 |
+
x = self.tsfm_encoder(x, src_mask=attn_mask)
|
345 |
+
x = x.permute(0, 2, 1)
|
346 |
+
x = self.tsfm_conv2(x) # C 512 -> 1024
|
347 |
+
|
348 |
+
# decoder
|
349 |
+
for i, upsampling_block in enumerate(self.decoder):
|
350 |
+
skip_i = skip_connections[i]
|
351 |
+
x += skip_i[:, :, :x.shape[-1]]
|
352 |
+
x = upsampling_block(x)
|
353 |
+
|
354 |
+
x = x[:, :, :L] * std
|
355 |
+
return x
|
356 |
+
|
357 |
+
|
358 |
+
if __name__ == '__main__':
|
359 |
+
import json
|
360 |
+
import argparse
|
361 |
+
import os
|
362 |
+
|
363 |
+
parser = argparse.ArgumentParser()
|
364 |
+
parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json',
|
365 |
+
help='JSON file for configuration')
|
366 |
+
args = parser.parse_args()
|
367 |
+
|
368 |
+
with open(args.config) as f:
|
369 |
+
data = f.read()
|
370 |
+
config = json.loads(data)
|
371 |
+
network_config = config["network_config"]
|
372 |
+
|
373 |
+
model = CleanUNet(**network_config).cuda()
|
374 |
+
from util import print_size
|
375 |
+
print_size(model, keyword="tsfm")
|
376 |
+
|
377 |
+
input_data = torch.ones([4,1,int(4.5*16000)]).cuda()
|
378 |
+
output = model(input_data)
|
379 |
+
print(output.shape)
|
380 |
+
|
381 |
+
y = torch.rand([4,1,int(4.5*16000)]).cuda()
|
382 |
+
loss = torch.nn.MSELoss()(y, output)
|
383 |
+
loss.backward()
|
384 |
+
print(loss.item())
|
385 |
+
|
src/utils.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import functools
|
4 |
+
import numpy as np
|
5 |
+
from math import cos, pi, floor, sin
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
# from stft_loss import MultiResolutionSTFTLoss
|
13 |
+
|
14 |
+
|
15 |
+
def flatten(v):
|
16 |
+
return [x for y in v for x in y]
|
17 |
+
|
18 |
+
|
19 |
+
def rescale(x):
|
20 |
+
return (x - x.min()) / (x.max() - x.min())
|
21 |
+
|
22 |
+
|
23 |
+
def find_max_epoch(path):
|
24 |
+
"""
|
25 |
+
Find latest checkpoint
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
maximum iteration, -1 if there is no (valid) checkpoint
|
29 |
+
"""
|
30 |
+
|
31 |
+
files = os.listdir(path)
|
32 |
+
epoch = -1
|
33 |
+
for f in files:
|
34 |
+
if len(f) <= 4:
|
35 |
+
continue
|
36 |
+
if f[-4:] == '.pkl':
|
37 |
+
number = f[:-4]
|
38 |
+
try:
|
39 |
+
epoch = max(epoch, int(number))
|
40 |
+
except:
|
41 |
+
continue
|
42 |
+
return epoch
|
43 |
+
|
44 |
+
|
45 |
+
def print_size(net, keyword=None):
|
46 |
+
"""
|
47 |
+
Print the number of parameters of a network
|
48 |
+
"""
|
49 |
+
|
50 |
+
if net is not None and isinstance(net, torch.nn.Module):
|
51 |
+
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
|
52 |
+
params = sum([np.prod(p.size()) for p in module_parameters])
|
53 |
+
|
54 |
+
print("{} Parameters: {:.6f}M".format(
|
55 |
+
net.__class__.__name__, params / 1e6), flush=True, end="; ")
|
56 |
+
|
57 |
+
if keyword is not None:
|
58 |
+
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
|
59 |
+
params = sum([np.prod(p.size()) for p in keyword_parameters])
|
60 |
+
print("{} Parameters: {:.6f}M".format(
|
61 |
+
keyword, params / 1e6), flush=True, end="; ")
|
62 |
+
|
63 |
+
print(" ")
|
64 |
+
|
65 |
+
|
66 |
+
####################### lr scheduler: Linear Warmup then Cosine Decay #############################
|
67 |
+
|
68 |
+
# Adapted from https://github.com/rosinality/vq-vae-2-pytorch
|
69 |
+
|
70 |
+
# Original Copyright 2019 Kim Seonghyeon
|
71 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
72 |
+
|
73 |
+
|
74 |
+
def anneal_linear(start, end, proportion):
|
75 |
+
return start + proportion * (end - start)
|
76 |
+
|
77 |
+
|
78 |
+
def anneal_cosine(start, end, proportion):
|
79 |
+
cos_val = cos(pi * proportion) + 1
|
80 |
+
return end + (start - end) / 2 * cos_val
|
81 |
+
|
82 |
+
|
83 |
+
class Phase:
|
84 |
+
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
|
85 |
+
self.start, self.end = start, end
|
86 |
+
self.n_iter = n_iter
|
87 |
+
self.anneal_fn = anneal_fn
|
88 |
+
self.n = cur_iter
|
89 |
+
|
90 |
+
def step(self):
|
91 |
+
self.n += 1
|
92 |
+
|
93 |
+
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
|
94 |
+
|
95 |
+
def reset(self):
|
96 |
+
self.n = 0
|
97 |
+
|
98 |
+
@property
|
99 |
+
def is_done(self):
|
100 |
+
return self.n >= self.n_iter
|
101 |
+
|
102 |
+
|
103 |
+
class LinearWarmupCosineDecay:
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
optimizer,
|
107 |
+
lr_max,
|
108 |
+
n_iter,
|
109 |
+
iteration=0,
|
110 |
+
divider=25,
|
111 |
+
warmup_proportion=0.3,
|
112 |
+
phase=('linear', 'cosine'),
|
113 |
+
):
|
114 |
+
self.optimizer = optimizer
|
115 |
+
|
116 |
+
phase1 = int(n_iter * warmup_proportion)
|
117 |
+
phase2 = n_iter - phase1
|
118 |
+
lr_min = lr_max / divider
|
119 |
+
|
120 |
+
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
|
121 |
+
|
122 |
+
cur_iter_phase1 = iteration
|
123 |
+
cur_iter_phase2 = max(0, iteration - phase1)
|
124 |
+
self.lr_phase = [
|
125 |
+
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
|
126 |
+
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
|
127 |
+
]
|
128 |
+
|
129 |
+
if iteration < phase1:
|
130 |
+
self.phase = 0
|
131 |
+
else:
|
132 |
+
self.phase = 1
|
133 |
+
|
134 |
+
def step(self):
|
135 |
+
lr = self.lr_phase[self.phase].step()
|
136 |
+
|
137 |
+
for group in self.optimizer.param_groups:
|
138 |
+
group['lr'] = lr
|
139 |
+
|
140 |
+
if self.lr_phase[self.phase].is_done:
|
141 |
+
self.phase += 1
|
142 |
+
|
143 |
+
if self.phase >= len(self.lr_phase):
|
144 |
+
for phase in self.lr_phase:
|
145 |
+
phase.reset()
|
146 |
+
|
147 |
+
self.phase = 0
|
148 |
+
|
149 |
+
return lr
|
150 |
+
|
151 |
+
|
152 |
+
####################### model util #############################
|
153 |
+
|
154 |
+
def std_normal(size):
|
155 |
+
"""
|
156 |
+
Generate the standard Gaussian variable of a certain size
|
157 |
+
"""
|
158 |
+
|
159 |
+
return torch.normal(0, 1, size=size).cuda()
|
160 |
+
|
161 |
+
|
162 |
+
def weight_scaling_init(layer):
|
163 |
+
"""
|
164 |
+
weight rescaling initialization from https://arxiv.org/abs/1911.13254
|
165 |
+
"""
|
166 |
+
w = layer.weight.detach()
|
167 |
+
alpha = 10.0 * w.std()
|
168 |
+
layer.weight.data /= torch.sqrt(alpha)
|
169 |
+
layer.bias.data /= torch.sqrt(alpha)
|
170 |
+
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def sampling(net, noisy_audio):
|
174 |
+
"""
|
175 |
+
Perform denoising (forward) step
|
176 |
+
"""
|
177 |
+
|
178 |
+
return net(noisy_audio)
|
179 |
+
|
180 |
+
|
181 |
+
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
|
182 |
+
"""
|
183 |
+
Loss function in CleanUNet
|
184 |
+
|
185 |
+
Parameters:
|
186 |
+
net: network
|
187 |
+
X: training data pair (clean audio, noisy_audio)
|
188 |
+
ell_p: \ell_p norm (1 or 2) of the AE loss
|
189 |
+
ell_p_lambda: factor of the AE loss
|
190 |
+
stft_lambda: factor of the STFT loss
|
191 |
+
mrstftloss: multi-resolution STFT loss function
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
loss: value of objective function
|
195 |
+
output_dic: values of each component of loss
|
196 |
+
"""
|
197 |
+
|
198 |
+
assert type(X) == tuple and len(X) == 2
|
199 |
+
|
200 |
+
clean_audio, noisy_audio = X
|
201 |
+
B, C, L = clean_audio.shape
|
202 |
+
output_dic = {}
|
203 |
+
loss = 0.0
|
204 |
+
|
205 |
+
# AE loss
|
206 |
+
denoised_audio = net(noisy_audio)
|
207 |
+
|
208 |
+
if ell_p == 2:
|
209 |
+
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
|
210 |
+
elif ell_p == 1:
|
211 |
+
ae_loss = F.l1_loss(denoised_audio, clean_audio)
|
212 |
+
else:
|
213 |
+
raise NotImplementedError
|
214 |
+
loss += ae_loss * ell_p_lambda
|
215 |
+
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
|
216 |
+
|
217 |
+
if stft_lambda > 0:
|
218 |
+
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
|
219 |
+
loss += (sc_loss + mag_loss) * stft_lambda
|
220 |
+
output_dic["stft_sc"] = sc_loss.data * stft_lambda
|
221 |
+
output_dic["stft_mag"] = mag_loss.data * stft_lambda
|
222 |
+
|
223 |
+
return loss, output_dic
|