File size: 8,948 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import threading
from contextlib import contextmanager
from datetime import datetime
from typing import Generator, List, Optional, OrderedDict, Union
import redis.lock
from inference.core import logger
from inference.core.active_learning.entities import StrategyLimit, StrategyLimitType
from inference.core.active_learning.utils import TIMESTAMP_FORMAT
from inference.core.cache.base import BaseCache
MAX_LOCK_TIME = 5
SECONDS_IN_HOUR = 60 * 60
USAGE_KEY = "usage"
LIMIT_TYPE2KEY_INFIX_GENERATOR = {
StrategyLimitType.MINUTELY: lambda: f"minute_{datetime.utcnow().minute}",
StrategyLimitType.HOURLY: lambda: f"hour_{datetime.utcnow().hour}",
StrategyLimitType.DAILY: lambda: f"day_{datetime.utcnow().strftime(TIMESTAMP_FORMAT)}",
}
LIMIT_TYPE2KEY_EXPIRATION = {
StrategyLimitType.MINUTELY: 120,
StrategyLimitType.HOURLY: 2 * SECONDS_IN_HOUR,
StrategyLimitType.DAILY: 25 * SECONDS_IN_HOUR,
}
def use_credit_of_matching_strategy(
cache: BaseCache,
workspace: str,
project: str,
matching_strategies_limits: OrderedDict[str, List[StrategyLimit]],
) -> Optional[str]:
# In scope of this function, cache keys updates regarding usage limits for
# specific :workspace and :project are locked - to ensure increment to be done atomically
# Limits are accounted at the moment of registration - which may introduce inaccuracy
# given that registration is postponed from prediction
# Returns: strategy with spare credit if found - else None
with lock_limits(cache=cache, workspace=workspace, project=project):
strategy_with_spare_credit = find_strategy_with_spare_usage_credit(
cache=cache,
workspace=workspace,
project=project,
matching_strategies_limits=matching_strategies_limits,
)
if strategy_with_spare_credit is None:
return None
consume_strategy_limits_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_with_spare_credit,
)
return strategy_with_spare_credit
def return_strategy_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
# In scope of this function, cache keys updates regarding usage limits for
# specific :workspace and :project are locked - to ensure decrement to be done atomically
# Returning strategy is a bit naive (we may add to a pool of credits from the next period - but only
# if we have previously taken from the previous one and some credits are used in the new pool) -
# in favour of easier implementation.
with lock_limits(cache=cache, workspace=workspace, project=project):
return_strategy_limits_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
@contextmanager
def lock_limits(
cache: BaseCache,
workspace: str,
project: str,
) -> Generator[Union[threading.Lock, redis.lock.Lock], None, None]:
limits_lock_key = generate_cache_key_for_active_learning_usage_lock(
workspace=workspace,
project=project,
)
with cache.lock(key=limits_lock_key, expire=MAX_LOCK_TIME) as lock:
yield lock
def find_strategy_with_spare_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
matching_strategies_limits: OrderedDict[str, List[StrategyLimit]],
) -> Optional[str]:
for strategy_name, strategy_limits in matching_strategies_limits.items():
rejected_by_strategy = (
datapoint_should_be_rejected_based_on_strategy_usage_limits(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
strategy_limits=strategy_limits,
)
)
if not rejected_by_strategy:
return strategy_name
return None
def datapoint_should_be_rejected_based_on_strategy_usage_limits(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
strategy_limits: List[StrategyLimit],
) -> bool:
for strategy_limit in strategy_limits:
limit_reached = datapoint_should_be_rejected_based_on_limit_usage(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
strategy_limit=strategy_limit,
)
if limit_reached:
logger.debug(
f"Violated Active Learning strategy limit: {strategy_limit.limit_type.name} "
f"with value {strategy_limit.value} for sampling strategy: {strategy_name}."
)
return True
return False
def datapoint_should_be_rejected_based_on_limit_usage(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
strategy_limit: StrategyLimit,
) -> bool:
current_usage = get_current_strategy_limit_usage(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=strategy_limit.limit_type,
)
if current_usage is None:
current_usage = 0
return current_usage >= strategy_limit.value
def consume_strategy_limits_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
for limit_type in StrategyLimitType:
consume_strategy_limit_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=limit_type,
)
def consume_strategy_limit_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
current_value = get_current_strategy_limit_usage(
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
if current_value is None:
current_value = 0
current_value += 1
set_current_strategy_limit_usage(
current_value=current_value,
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
def return_strategy_limits_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
for limit_type in StrategyLimitType:
return_strategy_limit_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=limit_type,
)
def return_strategy_limit_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
current_value = get_current_strategy_limit_usage(
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
if current_value is None:
return None
current_value = max(current_value - 1, 0)
set_current_strategy_limit_usage(
current_value=current_value,
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
def get_current_strategy_limit_usage(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> Optional[int]:
usage_key = generate_cache_key_for_active_learning_usage(
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
value = cache.get(usage_key)
if value is None:
return value
return value[USAGE_KEY]
def set_current_strategy_limit_usage(
current_value: int,
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
usage_key = generate_cache_key_for_active_learning_usage(
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
expire = LIMIT_TYPE2KEY_EXPIRATION[limit_type]
cache.set(key=usage_key, value={USAGE_KEY: current_value}, expire=expire) # type: ignore
def generate_cache_key_for_active_learning_usage_lock(
workspace: str,
project: str,
) -> str:
return f"active_learning:usage:{workspace}:{project}:usage:lock"
def generate_cache_key_for_active_learning_usage(
limit_type: StrategyLimitType,
workspace: str,
project: str,
strategy_name: str,
) -> str:
time_infix = LIMIT_TYPE2KEY_INFIX_GENERATOR[limit_type]()
return f"active_learning:usage:{workspace}:{project}:{strategy_name}:{time_infix}"
|