|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
|
|
|
|
class L2CS(nn.Module): |
|
"""L2CS Gaze Detection Model. |
|
|
|
This class is responsible for performing gaze detection using the L2CS-Net model. |
|
Ref: https://github.com/Ahmednull/L2CS-Net |
|
|
|
Methods: |
|
forward: Performs inference on the given image. |
|
""" |
|
|
|
def __init__(self, block, layers, num_bins): |
|
self.inplanes = 64 |
|
super(L2CS, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
self.fc_yaw_gaze = nn.Linear(512 * block.expansion, num_bins) |
|
self.fc_pitch_gaze = nn.Linear(512 * block.expansion, num_bins) |
|
|
|
|
|
self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2.0 / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
|
|
|
|
pre_yaw_gaze = self.fc_yaw_gaze(x) |
|
pre_pitch_gaze = self.fc_pitch_gaze(x) |
|
return pre_yaw_gaze, pre_pitch_gaze |
|
|