|
from typing import List, Tuple |
|
|
|
import numpy as np |
|
|
|
from inference.core.models.instance_segmentation_base import ( |
|
InstanceSegmentationBaseOnnxRoboflowInferenceModel, |
|
) |
|
|
|
|
|
class YOLOv8InstanceSegmentation(InstanceSegmentationBaseOnnxRoboflowInferenceModel): |
|
"""YOLOv8 Instance Segmentation ONNX Inference Model. |
|
|
|
This class is responsible for performing instance segmentation using the YOLOv8 model |
|
with ONNX runtime. |
|
|
|
Attributes: |
|
weights_file (str): Path to the ONNX weights file. |
|
|
|
Methods: |
|
predict: Performs inference on the given image using the ONNX session. |
|
""" |
|
|
|
@property |
|
def weights_file(self) -> str: |
|
"""Gets the weights file for the YOLOv8 model. |
|
|
|
Returns: |
|
str: Path to the ONNX weights file. |
|
""" |
|
return "weights.onnx" |
|
|
|
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]: |
|
"""Performs inference on the given image using the ONNX session. |
|
|
|
Args: |
|
img_in (np.ndarray): Input image as a NumPy array. |
|
|
|
Returns: |
|
Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks. |
|
""" |
|
predictions = self.onnx_session.run(None, {self.input_name: img_in}) |
|
protos = predictions[1] |
|
predictions = predictions[0] |
|
predictions = predictions.transpose(0, 2, 1) |
|
boxes = predictions[:, :, :4] |
|
class_confs = predictions[:, :, 4:-32] |
|
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) |
|
masks = predictions[:, :, -32:] |
|
predictions = np.concatenate([boxes, confs, class_confs, masks], axis=2) |
|
return predictions, protos |
|
|