|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
|
|
from src.efficientvit.models.utils.list import val2list |
|
|
|
__all__ = ["CosineLRwithWarmup"] |
|
|
|
|
|
class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): |
|
def __init__( |
|
self, |
|
optimizer: torch.optim.Optimizer, |
|
warmup_steps: int, |
|
warmup_lr: float, |
|
decay_steps: int or list[int], |
|
last_epoch: int = -1, |
|
) -> None: |
|
self.warmup_steps = warmup_steps |
|
self.warmup_lr = warmup_lr |
|
self.decay_steps = val2list(decay_steps) |
|
super().__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self) -> list[float]: |
|
if self.last_epoch < self.warmup_steps: |
|
return [ |
|
(base_lr - self.warmup_lr) * (self.last_epoch + 1) / self.warmup_steps |
|
+ self.warmup_lr |
|
for base_lr in self.base_lrs |
|
] |
|
else: |
|
current_steps = self.last_epoch - self.warmup_steps |
|
decay_steps = [0] + self.decay_steps |
|
idx = len(decay_steps) - 2 |
|
for i, decay_step in enumerate(decay_steps[:-1]): |
|
if decay_step <= current_steps < decay_steps[i + 1]: |
|
idx = i |
|
break |
|
current_steps -= decay_steps[idx] |
|
decay_step = decay_steps[idx + 1] - decay_steps[idx] |
|
return [ |
|
0.5 * base_lr * (1 + math.cos(math.pi * current_steps / decay_step)) |
|
for base_lr in self.base_lrs |
|
] |
|
|