|
import itertools |
|
import json |
|
import os |
|
from collections import OrderedDict |
|
from concurrent.futures import ThreadPoolExecutor |
|
from functools import partial |
|
from time import perf_counter |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import onnxruntime |
|
from PIL import Image |
|
|
|
from inference.core.cache import cache |
|
from inference.core.cache.model_artifacts import ( |
|
are_all_files_cached, |
|
clear_cache, |
|
get_cache_dir, |
|
get_cache_file_path, |
|
initialise_cache, |
|
load_json_from_cache, |
|
load_text_file_from_cache, |
|
save_bytes_in_cache, |
|
save_json_in_cache, |
|
save_text_lines_in_cache, |
|
) |
|
from inference.core.devices.utils import GLOBAL_DEVICE_ID |
|
from inference.core.entities.requests.inference import ( |
|
InferenceRequest, |
|
InferenceRequestImage, |
|
) |
|
from inference.core.entities.responses.inference import InferenceResponse |
|
from inference.core.env import ( |
|
API_KEY, |
|
API_KEY_ENV_NAMES, |
|
AWS_ACCESS_KEY_ID, |
|
AWS_SECRET_ACCESS_KEY, |
|
CORE_MODEL_BUCKET, |
|
DISABLE_PREPROC_AUTO_ORIENT, |
|
INFER_BUCKET, |
|
LAMBDA, |
|
MAX_BATCH_SIZE, |
|
MODEL_CACHE_DIR, |
|
ONNXRUNTIME_EXECUTION_PROVIDERS, |
|
REQUIRED_ONNX_PROVIDERS, |
|
TENSORRT_CACHE_PATH, |
|
) |
|
from inference.core.exceptions import ( |
|
MissingApiKeyError, |
|
ModelArtefactError, |
|
OnnxProviderNotAvailable, |
|
) |
|
from inference.core.logger import logger |
|
from inference.core.models.base import Model |
|
from inference.core.models.utils.batching import ( |
|
calculate_input_elements, |
|
create_batches, |
|
) |
|
from inference.core.roboflow_api import ( |
|
ModelEndpointType, |
|
get_from_url, |
|
get_roboflow_model_data, |
|
) |
|
from inference.core.utils.image_utils import load_image |
|
from inference.core.utils.onnx import get_onnxruntime_execution_providers |
|
from inference.core.utils.preprocess import letterbox_image, prepare |
|
from inference.core.utils.visualisation import draw_detection_predictions |
|
from inference.models.aliases import resolve_roboflow_model_alias |
|
|
|
NUM_S3_RETRY = 5 |
|
SLEEP_SECONDS_BETWEEN_RETRIES = 3 |
|
MODEL_METADATA_CACHE_EXPIRATION_TIMEOUT = 3600 |
|
|
|
S3_CLIENT = None |
|
if AWS_ACCESS_KEY_ID and AWS_ACCESS_KEY_ID: |
|
try: |
|
import boto3 |
|
from botocore.config import Config |
|
|
|
from inference.core.utils.s3 import download_s3_files_to_directory |
|
|
|
config = Config(retries={"max_attempts": NUM_S3_RETRY, "mode": "standard"}) |
|
S3_CLIENT = boto3.client("s3", config=config) |
|
except: |
|
logger.debug("Error loading boto3") |
|
pass |
|
|
|
DEFAULT_COLOR_PALETTE = [ |
|
"#4892EA", |
|
"#00EEC3", |
|
"#FE4EF0", |
|
"#F4004E", |
|
"#FA7200", |
|
"#EEEE17", |
|
"#90FF00", |
|
"#78C1D2", |
|
"#8C29FF", |
|
] |
|
|
|
|
|
class RoboflowInferenceModel(Model): |
|
"""Base Roboflow inference model.""" |
|
|
|
def __init__( |
|
self, |
|
model_id: str, |
|
cache_dir_root=MODEL_CACHE_DIR, |
|
api_key=None, |
|
load_weights=True, |
|
): |
|
""" |
|
Initialize the RoboflowInferenceModel object. |
|
|
|
Args: |
|
model_id (str): The unique identifier for the model. |
|
cache_dir_root (str, optional): The root directory for the cache. Defaults to MODEL_CACHE_DIR. |
|
api_key (str, optional): API key for authentication. Defaults to None. |
|
""" |
|
super().__init__() |
|
self.load_weights = load_weights |
|
self.metrics = {"num_inferences": 0, "avg_inference_time": 0.0} |
|
self.api_key = api_key if api_key else API_KEY |
|
model_id = resolve_roboflow_model_alias(model_id=model_id) |
|
self.dataset_id, self.version_id = model_id.split("/") |
|
self.endpoint = model_id |
|
self.device_id = GLOBAL_DEVICE_ID |
|
self.cache_dir = os.path.join(cache_dir_root, self.endpoint) |
|
self.keypoints_metadata: Optional[dict] = None |
|
initialise_cache(model_id=self.endpoint) |
|
|
|
def cache_file(self, f: str) -> str: |
|
"""Get the cache file path for a given file. |
|
|
|
Args: |
|
f (str): Filename. |
|
|
|
Returns: |
|
str: Full path to the cached file. |
|
""" |
|
return get_cache_file_path(file=f, model_id=self.endpoint) |
|
|
|
def clear_cache(self) -> None: |
|
"""Clear the cache directory.""" |
|
clear_cache(model_id=self.endpoint) |
|
|
|
def draw_predictions( |
|
self, |
|
inference_request: InferenceRequest, |
|
inference_response: InferenceResponse, |
|
) -> bytes: |
|
"""Draw predictions from an inference response onto the original image provided by an inference request |
|
|
|
Args: |
|
inference_request (ObjectDetectionInferenceRequest): The inference request containing the image on which to draw predictions |
|
inference_response (ObjectDetectionInferenceResponse): The inference response containing predictions to be drawn |
|
|
|
Returns: |
|
str: A base64 encoded image string |
|
""" |
|
return draw_detection_predictions( |
|
inference_request=inference_request, |
|
inference_response=inference_response, |
|
colors=self.colors, |
|
) |
|
|
|
@property |
|
def get_class_names(self): |
|
return self.class_names |
|
|
|
def get_device_id(self) -> str: |
|
""" |
|
Get the device identifier on which the model is deployed. |
|
|
|
Returns: |
|
str: Device identifier. |
|
""" |
|
return self.device_id |
|
|
|
def get_infer_bucket_file_list(self) -> List[str]: |
|
"""Get a list of inference bucket files. |
|
|
|
Raises: |
|
NotImplementedError: If the method is not implemented. |
|
|
|
Returns: |
|
List[str]: A list of inference bucket files. |
|
""" |
|
raise NotImplementedError( |
|
self.__class__.__name__ + ".get_infer_bucket_file_list" |
|
) |
|
|
|
@property |
|
def cache_key(self): |
|
return f"metadata:{self.endpoint}" |
|
|
|
@staticmethod |
|
def model_metadata_from_memcache_endpoint(endpoint): |
|
model_metadata = cache.get(f"metadata:{endpoint}") |
|
return model_metadata |
|
|
|
def model_metadata_from_memcache(self): |
|
model_metadata = cache.get(self.cache_key) |
|
return model_metadata |
|
|
|
def write_model_metadata_to_memcache(self, metadata): |
|
cache.set( |
|
self.cache_key, metadata, expire=MODEL_METADATA_CACHE_EXPIRATION_TIMEOUT |
|
) |
|
|
|
@property |
|
def has_model_metadata(self): |
|
return self.model_metadata_from_memcache() is not None |
|
|
|
def get_model_artifacts(self) -> None: |
|
"""Fetch or load the model artifacts. |
|
|
|
Downloads the model artifacts from S3 or the Roboflow API if they are not already cached. |
|
""" |
|
self.cache_model_artefacts() |
|
self.load_model_artifacts_from_cache() |
|
|
|
def cache_model_artefacts(self) -> None: |
|
infer_bucket_files = self.get_all_required_infer_bucket_file() |
|
if are_all_files_cached(files=infer_bucket_files, model_id=self.endpoint): |
|
return None |
|
if is_model_artefacts_bucket_available(): |
|
self.download_model_artefacts_from_s3() |
|
return None |
|
self.download_model_artifacts_from_roboflow_api() |
|
|
|
def get_all_required_infer_bucket_file(self) -> List[str]: |
|
infer_bucket_files = self.get_infer_bucket_file_list() |
|
infer_bucket_files.append(self.weights_file) |
|
logger.debug(f"List of files required to load model: {infer_bucket_files}") |
|
return [f for f in infer_bucket_files if f is not None] |
|
|
|
def download_model_artefacts_from_s3(self) -> None: |
|
try: |
|
logger.debug("Downloading model artifacts from S3") |
|
infer_bucket_files = self.get_all_required_infer_bucket_file() |
|
cache_directory = get_cache_dir() |
|
s3_keys = [f"{self.endpoint}/{file}" for file in infer_bucket_files] |
|
download_s3_files_to_directory( |
|
bucket=self.model_artifact_bucket, |
|
keys=s3_keys, |
|
target_dir=cache_directory, |
|
s3_client=S3_CLIENT, |
|
) |
|
except Exception as error: |
|
raise ModelArtefactError( |
|
f"Could not obtain model artefacts from S3 with keys {s3_keys}. Cause: {error}" |
|
) from error |
|
|
|
@property |
|
def model_artifact_bucket(self): |
|
return INFER_BUCKET |
|
|
|
def download_model_artifacts_from_roboflow_api(self) -> None: |
|
logger.debug("Downloading model artifacts from Roboflow API") |
|
api_data = get_roboflow_model_data( |
|
api_key=self.api_key, |
|
model_id=self.endpoint, |
|
endpoint_type=ModelEndpointType.ORT, |
|
device_id=self.device_id, |
|
) |
|
if "ort" not in api_data.keys(): |
|
raise ModelArtefactError( |
|
"Could not find `ort` key in roboflow API model description response." |
|
) |
|
api_data = api_data["ort"] |
|
if "classes" in api_data: |
|
save_text_lines_in_cache( |
|
content=api_data["classes"], |
|
file="class_names.txt", |
|
model_id=self.endpoint, |
|
) |
|
if "model" not in api_data: |
|
raise ModelArtefactError( |
|
"Could not find `model` key in roboflow API model description response." |
|
) |
|
if "environment" not in api_data: |
|
raise ModelArtefactError( |
|
"Could not find `environment` key in roboflow API model description response." |
|
) |
|
environment = get_from_url(api_data["environment"]) |
|
model_weights_response = get_from_url(api_data["model"], json_response=False) |
|
save_bytes_in_cache( |
|
content=model_weights_response.content, |
|
file=self.weights_file, |
|
model_id=self.endpoint, |
|
) |
|
if "colors" in api_data: |
|
environment["COLORS"] = api_data["colors"] |
|
save_json_in_cache( |
|
content=environment, |
|
file="environment.json", |
|
model_id=self.endpoint, |
|
) |
|
if "keypoints_metadata" in api_data: |
|
|
|
save_json_in_cache( |
|
content=api_data["keypoints_metadata"], |
|
file="keypoints_metadata.json", |
|
model_id=self.endpoint, |
|
) |
|
|
|
def load_model_artifacts_from_cache(self) -> None: |
|
logger.debug("Model artifacts already downloaded, loading model from cache") |
|
infer_bucket_files = self.get_all_required_infer_bucket_file() |
|
if "environment.json" in infer_bucket_files: |
|
self.environment = load_json_from_cache( |
|
file="environment.json", |
|
model_id=self.endpoint, |
|
object_pairs_hook=OrderedDict, |
|
) |
|
if "class_names.txt" in infer_bucket_files: |
|
self.class_names = load_text_file_from_cache( |
|
file="class_names.txt", |
|
model_id=self.endpoint, |
|
split_lines=True, |
|
strip_white_chars=True, |
|
) |
|
else: |
|
self.class_names = get_class_names_from_environment_file( |
|
environment=self.environment |
|
) |
|
self.colors = get_color_mapping_from_environment( |
|
environment=self.environment, |
|
class_names=self.class_names, |
|
) |
|
if "keypoints_metadata.json" in infer_bucket_files: |
|
self.keypoints_metadata = parse_keypoints_metadata( |
|
load_json_from_cache( |
|
file="keypoints_metadata.json", |
|
model_id=self.endpoint, |
|
object_pairs_hook=OrderedDict, |
|
) |
|
) |
|
self.num_classes = len(self.class_names) |
|
if "PREPROCESSING" not in self.environment: |
|
raise ModelArtefactError( |
|
"Could not find `PREPROCESSING` key in environment file." |
|
) |
|
if issubclass(type(self.environment["PREPROCESSING"]), dict): |
|
self.preproc = self.environment["PREPROCESSING"] |
|
else: |
|
self.preproc = json.loads(self.environment["PREPROCESSING"]) |
|
if self.preproc.get("resize"): |
|
self.resize_method = self.preproc["resize"].get("format", "Stretch to") |
|
if self.resize_method not in [ |
|
"Stretch to", |
|
"Fit (black edges) in", |
|
"Fit (white edges) in", |
|
]: |
|
self.resize_method = "Stretch to" |
|
else: |
|
self.resize_method = "Stretch to" |
|
logger.debug(f"Resize method is '{self.resize_method}'") |
|
self.multiclass = self.environment.get("MULTICLASS", False) |
|
|
|
def initialize_model(self) -> None: |
|
"""Initialize the model. |
|
|
|
Raises: |
|
NotImplementedError: If the method is not implemented. |
|
""" |
|
raise NotImplementedError(self.__class__.__name__ + ".initialize_model") |
|
|
|
def preproc_image( |
|
self, |
|
image: Union[Any, InferenceRequestImage], |
|
disable_preproc_auto_orient: bool = False, |
|
disable_preproc_contrast: bool = False, |
|
disable_preproc_grayscale: bool = False, |
|
disable_preproc_static_crop: bool = False, |
|
) -> Tuple[np.ndarray, Tuple[int, int]]: |
|
""" |
|
Preprocesses an inference request image by loading it, then applying any pre-processing specified by the Roboflow platform, then scaling it to the inference input dimensions. |
|
|
|
Args: |
|
image (Union[Any, InferenceRequestImage]): An object containing information necessary to load the image for inference. |
|
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. |
|
disable_preproc_contrast (bool, optional): If true, the contrast preprocessing step is disabled for this call. Default is False. |
|
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. |
|
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. |
|
|
|
Returns: |
|
Tuple[np.ndarray, Tuple[int, int]]: A tuple containing a numpy array of the preprocessed image pixel data and a tuple of the images original size. |
|
""" |
|
np_image, is_bgr = load_image( |
|
image, |
|
disable_preproc_auto_orient=disable_preproc_auto_orient |
|
or "auto-orient" not in self.preproc.keys() |
|
or DISABLE_PREPROC_AUTO_ORIENT, |
|
) |
|
preprocessed_image, img_dims = self.preprocess_image( |
|
np_image, |
|
disable_preproc_contrast=disable_preproc_contrast, |
|
disable_preproc_grayscale=disable_preproc_grayscale, |
|
disable_preproc_static_crop=disable_preproc_static_crop, |
|
) |
|
|
|
if self.resize_method == "Stretch to": |
|
resized = cv2.resize( |
|
preprocessed_image, (self.img_size_w, self.img_size_h), cv2.INTER_CUBIC |
|
) |
|
elif self.resize_method == "Fit (black edges) in": |
|
resized = letterbox_image( |
|
preprocessed_image, (self.img_size_w, self.img_size_h) |
|
) |
|
elif self.resize_method == "Fit (white edges) in": |
|
resized = letterbox_image( |
|
preprocessed_image, |
|
(self.img_size_w, self.img_size_h), |
|
color=(255, 255, 255), |
|
) |
|
|
|
if is_bgr: |
|
resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) |
|
img_in = np.transpose(resized, (2, 0, 1)) |
|
img_in = img_in.astype(np.float32) |
|
img_in = np.expand_dims(img_in, axis=0) |
|
|
|
return img_in, img_dims |
|
|
|
def preprocess_image( |
|
self, |
|
image: np.ndarray, |
|
disable_preproc_contrast: bool = False, |
|
disable_preproc_grayscale: bool = False, |
|
disable_preproc_static_crop: bool = False, |
|
) -> Tuple[np.ndarray, Tuple[int, int]]: |
|
""" |
|
Preprocesses the given image using specified preprocessing steps. |
|
|
|
Args: |
|
image (Image.Image): The PIL image to preprocess. |
|
disable_preproc_contrast (bool, optional): If true, the contrast preprocessing step is disabled for this call. Default is False. |
|
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. |
|
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. |
|
|
|
Returns: |
|
Image.Image: The preprocessed PIL image. |
|
""" |
|
return prepare( |
|
image, |
|
self.preproc, |
|
disable_preproc_contrast=disable_preproc_contrast, |
|
disable_preproc_grayscale=disable_preproc_grayscale, |
|
disable_preproc_static_crop=disable_preproc_static_crop, |
|
) |
|
|
|
@property |
|
def weights_file(self) -> str: |
|
"""Abstract property representing the file containing the model weights. |
|
|
|
Raises: |
|
NotImplementedError: This property must be implemented in subclasses. |
|
|
|
Returns: |
|
str: The file path to the weights file. |
|
""" |
|
raise NotImplementedError(self.__class__.__name__ + ".weights_file") |
|
|
|
|
|
class RoboflowCoreModel(RoboflowInferenceModel): |
|
"""Base Roboflow inference model (Inherits from CvModel since all Roboflow models are CV models currently).""" |
|
|
|
def __init__( |
|
self, |
|
model_id: str, |
|
api_key=None, |
|
): |
|
"""Initializes the RoboflowCoreModel instance. |
|
|
|
Args: |
|
model_id (str): The identifier for the specific model. |
|
api_key ([type], optional): The API key for authentication. Defaults to None. |
|
""" |
|
super().__init__(model_id, api_key=api_key) |
|
self.download_weights() |
|
|
|
def download_weights(self) -> None: |
|
"""Downloads the model weights from the configured source. |
|
|
|
This method includes handling for AWS access keys and error handling. |
|
""" |
|
infer_bucket_files = self.get_infer_bucket_file_list() |
|
if are_all_files_cached(files=infer_bucket_files, model_id=self.endpoint): |
|
logger.debug("Model artifacts already downloaded, loading from cache") |
|
return None |
|
if is_model_artefacts_bucket_available(): |
|
self.download_model_artefacts_from_s3() |
|
return None |
|
self.download_model_from_roboflow_api() |
|
|
|
def download_model_from_roboflow_api(self) -> None: |
|
api_data = get_roboflow_model_data( |
|
api_key=self.api_key, |
|
model_id=self.endpoint, |
|
endpoint_type=ModelEndpointType.CORE_MODEL, |
|
device_id=self.device_id, |
|
) |
|
if "weights" not in api_data: |
|
raise ModelArtefactError( |
|
f"`weights` key not available in Roboflow API response while downloading model weights." |
|
) |
|
for weights_url_key in api_data["weights"]: |
|
weights_url = api_data["weights"][weights_url_key] |
|
t1 = perf_counter() |
|
model_weights_response = get_from_url(weights_url, json_response=False) |
|
filename = weights_url.split("?")[0].split("/")[-1] |
|
save_bytes_in_cache( |
|
content=model_weights_response.content, |
|
file=filename, |
|
model_id=self.endpoint, |
|
) |
|
if perf_counter() - t1 > 120: |
|
logger.debug( |
|
"Weights download took longer than 120 seconds, refreshing API request" |
|
) |
|
api_data = get_roboflow_model_data( |
|
api_key=self.api_key, |
|
model_id=self.endpoint, |
|
endpoint_type=ModelEndpointType.CORE_MODEL, |
|
device_id=self.device_id, |
|
) |
|
|
|
def get_device_id(self) -> str: |
|
"""Returns the device ID associated with this model. |
|
|
|
Returns: |
|
str: The device ID. |
|
""" |
|
return self.device_id |
|
|
|
def get_infer_bucket_file_list(self) -> List[str]: |
|
"""Abstract method to get the list of files to be downloaded from the inference bucket. |
|
|
|
Raises: |
|
NotImplementedError: This method must be implemented in subclasses. |
|
|
|
Returns: |
|
List[str]: A list of filenames. |
|
""" |
|
raise NotImplementedError( |
|
"get_infer_bucket_file_list not implemented for OnnxRoboflowCoreModel" |
|
) |
|
|
|
def preprocess_image(self, image: Image.Image) -> Image.Image: |
|
"""Abstract method to preprocess an image. |
|
|
|
Raises: |
|
NotImplementedError: This method must be implemented in subclasses. |
|
|
|
Returns: |
|
Image.Image: The preprocessed PIL image. |
|
""" |
|
raise NotImplementedError(self.__class__.__name__ + ".preprocess_image") |
|
|
|
@property |
|
def weights_file(self) -> str: |
|
"""Abstract property representing the file containing the model weights. For core models, all model artifacts are handled through get_infer_bucket_file_list method.""" |
|
return None |
|
|
|
@property |
|
def model_artifact_bucket(self): |
|
return CORE_MODEL_BUCKET |
|
|
|
|
|
class OnnxRoboflowInferenceModel(RoboflowInferenceModel): |
|
"""Roboflow Inference Model that operates using an ONNX model file.""" |
|
|
|
def __init__( |
|
self, |
|
model_id: str, |
|
onnxruntime_execution_providers: List[ |
|
str |
|
] = get_onnxruntime_execution_providers(ONNXRUNTIME_EXECUTION_PROVIDERS), |
|
*args, |
|
**kwargs, |
|
): |
|
"""Initializes the OnnxRoboflowInferenceModel instance. |
|
|
|
Args: |
|
model_id (str): The identifier for the specific ONNX model. |
|
*args: Variable length argument list. |
|
**kwargs: Arbitrary keyword arguments. |
|
""" |
|
super().__init__(model_id, *args, **kwargs) |
|
if self.load_weights or not self.has_model_metadata: |
|
self.onnxruntime_execution_providers = onnxruntime_execution_providers |
|
for ep in self.onnxruntime_execution_providers: |
|
if ep == "TensorrtExecutionProvider": |
|
ep = ( |
|
"TensorrtExecutionProvider", |
|
{ |
|
"trt_engine_cache_enable": True, |
|
"trt_engine_cache_path": os.path.join( |
|
TENSORRT_CACHE_PATH, self.endpoint |
|
), |
|
"trt_fp16_enable": True, |
|
}, |
|
) |
|
self.initialize_model() |
|
self.image_loader_threadpool = ThreadPoolExecutor(max_workers=None) |
|
try: |
|
self.validate_model() |
|
except ModelArtefactError as e: |
|
logger.error(f"Unable to validate model artifacts, clearing cache: {e}") |
|
self.clear_cache() |
|
raise ModelArtefactError from e |
|
|
|
def infer(self, image: Any, **kwargs) -> Any: |
|
input_elements = calculate_input_elements(input_value=image) |
|
max_batch_size = MAX_BATCH_SIZE if self.batching_enabled else self.batch_size |
|
if (input_elements == 1) or (max_batch_size == float("inf")): |
|
return super().infer(image, **kwargs) |
|
logger.debug( |
|
f"Inference will be executed in batches, as there is {input_elements} input elements and " |
|
f"maximum batch size for a model is set to: {max_batch_size}" |
|
) |
|
inference_results = [] |
|
for batch_input in create_batches(sequence=image, batch_size=max_batch_size): |
|
batch_inference_results = super().infer(batch_input, **kwargs) |
|
inference_results.append(batch_inference_results) |
|
return self.merge_inference_results(inference_results=inference_results) |
|
|
|
def merge_inference_results(self, inference_results: List[Any]) -> Any: |
|
return list(itertools.chain(*inference_results)) |
|
|
|
def validate_model(self) -> None: |
|
if not self.load_weights: |
|
return |
|
try: |
|
assert self.onnx_session is not None |
|
except AssertionError as e: |
|
raise ModelArtefactError( |
|
"ONNX session not initialized. Check that the model weights are available." |
|
) from e |
|
try: |
|
self.run_test_inference() |
|
except Exception as e: |
|
raise ModelArtefactError(f"Unable to run test inference. Cause: {e}") from e |
|
try: |
|
self.validate_model_classes() |
|
except Exception as e: |
|
raise ModelArtefactError( |
|
f"Unable to validate model classes. Cause: {e}" |
|
) from e |
|
|
|
def run_test_inference(self) -> None: |
|
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) |
|
return self.infer(test_image) |
|
|
|
def get_model_output_shape(self) -> Tuple[int, int, int]: |
|
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) |
|
test_image, _ = self.preprocess(test_image) |
|
output = self.predict(test_image)[0] |
|
return output.shape |
|
|
|
def validate_model_classes(self) -> None: |
|
pass |
|
|
|
def get_infer_bucket_file_list(self) -> list: |
|
"""Returns the list of files to be downloaded from the inference bucket for ONNX model. |
|
|
|
Returns: |
|
list: A list of filenames specific to ONNX models. |
|
""" |
|
return ["environment.json", "class_names.txt"] |
|
|
|
def initialize_model(self) -> None: |
|
"""Initializes the ONNX model, setting up the inference session and other necessary properties.""" |
|
self.get_model_artifacts() |
|
logger.debug("Creating inference session") |
|
if self.load_weights or not self.has_model_metadata: |
|
t1_session = perf_counter() |
|
|
|
providers = self.onnxruntime_execution_providers |
|
if not self.load_weights: |
|
providers = ["CPUExecutionProvider"] |
|
try: |
|
self.onnx_session = onnxruntime.InferenceSession( |
|
self.cache_file(self.weights_file), |
|
providers=providers, |
|
) |
|
except Exception as e: |
|
self.clear_cache() |
|
raise ModelArtefactError( |
|
f"Unable to load ONNX session. Cause: {e}" |
|
) from e |
|
logger.debug(f"Session created in {perf_counter() - t1_session} seconds") |
|
|
|
if REQUIRED_ONNX_PROVIDERS: |
|
available_providers = onnxruntime.get_available_providers() |
|
for provider in REQUIRED_ONNX_PROVIDERS: |
|
if provider not in available_providers: |
|
raise OnnxProviderNotAvailable( |
|
f"Required ONNX Execution Provider {provider} is not availble. Check that you are using the correct docker image on a supported device." |
|
) |
|
|
|
inputs = self.onnx_session.get_inputs()[0] |
|
input_shape = inputs.shape |
|
self.batch_size = input_shape[0] |
|
self.img_size_h = input_shape[2] |
|
self.img_size_w = input_shape[3] |
|
self.input_name = inputs.name |
|
if isinstance(self.img_size_h, str) or isinstance(self.img_size_w, str): |
|
if "resize" in self.preproc: |
|
self.img_size_h = int(self.preproc["resize"]["height"]) |
|
self.img_size_w = int(self.preproc["resize"]["width"]) |
|
else: |
|
self.img_size_h = 640 |
|
self.img_size_w = 640 |
|
|
|
if isinstance(self.batch_size, str): |
|
self.batching_enabled = True |
|
logger.debug( |
|
f"Model {self.endpoint} is loaded with dynamic batching enabled" |
|
) |
|
else: |
|
self.batching_enabled = False |
|
logger.debug( |
|
f"Model {self.endpoint} is loaded with dynamic batching disabled" |
|
) |
|
|
|
model_metadata = { |
|
"batch_size": self.batch_size, |
|
"img_size_h": self.img_size_h, |
|
"img_size_w": self.img_size_w, |
|
} |
|
logger.debug(f"Writing model metadata to memcache") |
|
self.write_model_metadata_to_memcache(model_metadata) |
|
if not self.load_weights: |
|
del self.onnx_session |
|
else: |
|
if not self.has_model_metadata: |
|
raise ValueError( |
|
"This should be unreachable, should get weights if we don't have model metadata" |
|
) |
|
logger.debug(f"Loading model metadata from memcache") |
|
metadata = self.model_metadata_from_memcache() |
|
self.batch_size = metadata["batch_size"] |
|
self.img_size_h = metadata["img_size_h"] |
|
self.img_size_w = metadata["img_size_w"] |
|
if isinstance(self.batch_size, str): |
|
self.batching_enabled = True |
|
logger.debug( |
|
f"Model {self.endpoint} is loaded with dynamic batching enabled" |
|
) |
|
else: |
|
self.batching_enabled = False |
|
logger.debug( |
|
f"Model {self.endpoint} is loaded with dynamic batching disabled" |
|
) |
|
|
|
def load_image( |
|
self, |
|
image: Any, |
|
disable_preproc_auto_orient: bool = False, |
|
disable_preproc_contrast: bool = False, |
|
disable_preproc_grayscale: bool = False, |
|
disable_preproc_static_crop: bool = False, |
|
) -> Tuple[np.ndarray, Tuple[int, int]]: |
|
if isinstance(image, list): |
|
preproc_image = partial( |
|
self.preproc_image, |
|
disable_preproc_auto_orient=disable_preproc_auto_orient, |
|
disable_preproc_contrast=disable_preproc_contrast, |
|
disable_preproc_grayscale=disable_preproc_grayscale, |
|
disable_preproc_static_crop=disable_preproc_static_crop, |
|
) |
|
imgs_with_dims = self.image_loader_threadpool.map(preproc_image, image) |
|
imgs, img_dims = zip(*imgs_with_dims) |
|
img_in = np.concatenate(imgs, axis=0) |
|
else: |
|
img_in, img_dims = self.preproc_image( |
|
image, |
|
disable_preproc_auto_orient=disable_preproc_auto_orient, |
|
disable_preproc_contrast=disable_preproc_contrast, |
|
disable_preproc_grayscale=disable_preproc_grayscale, |
|
disable_preproc_static_crop=disable_preproc_static_crop, |
|
) |
|
img_dims = [img_dims] |
|
return img_in, img_dims |
|
|
|
@property |
|
def weights_file(self) -> str: |
|
"""Returns the file containing the ONNX model weights. |
|
|
|
Returns: |
|
str: The file path to the weights file. |
|
""" |
|
return "weights.onnx" |
|
|
|
|
|
class OnnxRoboflowCoreModel(RoboflowCoreModel): |
|
"""Roboflow Inference Model that operates using an ONNX model file.""" |
|
|
|
pass |
|
|
|
|
|
def get_class_names_from_environment_file(environment: Optional[dict]) -> List[str]: |
|
if environment is None: |
|
raise ModelArtefactError( |
|
f"Missing environment while attempting to get model class names." |
|
) |
|
if class_mapping_not_available_in_environment(environment=environment): |
|
raise ModelArtefactError( |
|
f"Missing `CLASS_MAP` in environment or `CLASS_MAP` is not dict." |
|
) |
|
class_names = [] |
|
for i in range(len(environment["CLASS_MAP"].keys())): |
|
class_names.append(environment["CLASS_MAP"][str(i)]) |
|
return class_names |
|
|
|
|
|
def class_mapping_not_available_in_environment(environment: dict) -> bool: |
|
return "CLASS_MAP" not in environment or not issubclass( |
|
type(environment["CLASS_MAP"]), dict |
|
) |
|
|
|
|
|
def get_color_mapping_from_environment( |
|
environment: Optional[dict], class_names: List[str] |
|
) -> Dict[str, str]: |
|
if color_mapping_available_in_environment(environment=environment): |
|
return environment["COLORS"] |
|
return { |
|
class_name: DEFAULT_COLOR_PALETTE[i % len(DEFAULT_COLOR_PALETTE)] |
|
for i, class_name in enumerate(class_names) |
|
} |
|
|
|
|
|
def color_mapping_available_in_environment(environment: Optional[dict]) -> bool: |
|
return ( |
|
environment is not None |
|
and "COLORS" in environment |
|
and issubclass(type(environment["COLORS"]), dict) |
|
) |
|
|
|
|
|
def is_model_artefacts_bucket_available() -> bool: |
|
return ( |
|
AWS_ACCESS_KEY_ID is not None |
|
and AWS_SECRET_ACCESS_KEY is not None |
|
and LAMBDA |
|
and S3_CLIENT is not None |
|
) |
|
|
|
|
|
def parse_keypoints_metadata(metadata: list) -> dict: |
|
return { |
|
e["object_class_id"]: {int(key): value for key, value in e["keypoints"].items()} |
|
for e in metadata |
|
} |
|
|