|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch |
|
import torch.distributed |
|
|
|
from src.efficientvit.models.utils.list import list_mean, list_sum |
|
|
|
__all__ = [ |
|
"dist_init", |
|
"get_dist_rank", |
|
"get_dist_size", |
|
"is_master", |
|
"dist_barrier", |
|
"get_dist_local_rank", |
|
"sync_tensor", |
|
] |
|
|
|
|
|
def dist_init() -> None: |
|
try: |
|
torch.distributed.init_process_group(backend="nccl") |
|
assert torch.distributed.is_initialized() |
|
except Exception: |
|
|
|
from torchpack import distributed as dist |
|
|
|
dist.init() |
|
os.environ["RANK"] = f"{dist.rank()}" |
|
os.environ["WORLD_SIZE"] = f"{dist.size()}" |
|
os.environ["LOCAL_RANK"] = f"{dist.local_rank()}" |
|
|
|
|
|
def get_dist_rank() -> int: |
|
return int(os.environ["RANK"]) |
|
|
|
|
|
def get_dist_size() -> int: |
|
return int(os.environ["WORLD_SIZE"]) |
|
|
|
|
|
def is_master() -> bool: |
|
return get_dist_rank() == 0 |
|
|
|
|
|
def dist_barrier() -> None: |
|
torch.distributed.barrier() |
|
|
|
|
|
def get_dist_local_rank() -> int: |
|
return int(os.environ["LOCAL_RANK"]) |
|
|
|
|
|
def sync_tensor( |
|
tensor: torch.Tensor or float, reduce="mean" |
|
) -> torch.Tensor or list[torch.Tensor]: |
|
if not isinstance(tensor, torch.Tensor): |
|
tensor = torch.Tensor(1).fill_(tensor).cuda() |
|
tensor_list = [torch.empty_like(tensor) for _ in range(get_dist_size())] |
|
torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False) |
|
if reduce == "mean": |
|
return list_mean(tensor_list) |
|
elif reduce == "sum": |
|
return list_sum(tensor_list) |
|
elif reduce == "cat": |
|
return torch.cat(tensor_list, dim=0) |
|
elif reduce == "root": |
|
return tensor_list[0] |
|
else: |
|
return tensor_list |
|
|