|
from typing import Optional |
|
|
|
import numpy as np |
|
|
|
|
|
def w_np_non_max_suppression( |
|
prediction, |
|
conf_thresh: float = 0.25, |
|
iou_thresh: float = 0.45, |
|
class_agnostic: bool = False, |
|
max_detections: int = 300, |
|
max_candidate_detections: int = 3000, |
|
timeout_seconds: Optional[int] = None, |
|
num_masks: int = 0, |
|
box_format: str = "xywh", |
|
): |
|
"""Applies non-maximum suppression to predictions. |
|
|
|
Args: |
|
prediction (np.ndarray): Array of predictions. Format for single prediction is |
|
[bbox x 4, max_class_confidence, (confidence) x num_of_classes, additional_element x num_masks] |
|
conf_thresh (float, optional): Confidence threshold. Defaults to 0.25. |
|
iou_thresh (float, optional): IOU threshold. Defaults to 0.45. |
|
class_agnostic (bool, optional): Whether to ignore class labels. Defaults to False. |
|
max_detections (int, optional): Maximum number of detections. Defaults to 300. |
|
max_candidate_detections (int, optional): Maximum number of candidate detections. Defaults to 3000. |
|
timeout_seconds (Optional[int], optional): Timeout in seconds. Defaults to None. |
|
num_masks (int, optional): Number of masks. Defaults to 0. |
|
box_format (str, optional): Format of bounding boxes. Either 'xywh' or 'xyxy'. Defaults to 'xywh'. |
|
|
|
Returns: |
|
list: List of filtered predictions after non-maximum suppression. Format of a single result is: |
|
[bbox x 4, max_class_confidence, max_class_confidence, id_of_class_with_max_confidence, |
|
additional_element x num_masks] |
|
""" |
|
num_classes = prediction.shape[2] - 5 - num_masks |
|
|
|
np_box_corner = np.zeros(prediction.shape) |
|
if box_format == "xywh": |
|
np_box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 |
|
np_box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 |
|
np_box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 |
|
np_box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 |
|
prediction[:, :, :4] = np_box_corner[:, :, :4] |
|
elif box_format == "xyxy": |
|
pass |
|
else: |
|
raise ValueError( |
|
"box_format must be either 'xywh' or 'xyxy', got {}".format(box_format) |
|
) |
|
|
|
batch_predictions = [] |
|
for np_image_i, np_image_pred in enumerate(prediction): |
|
filtered_predictions = [] |
|
np_conf_mask = (np_image_pred[:, 4] >= conf_thresh).squeeze() |
|
|
|
np_image_pred = np_image_pred[np_conf_mask] |
|
if np_image_pred.shape[0] == 0: |
|
batch_predictions.append(filtered_predictions) |
|
continue |
|
np_class_conf = np.max(np_image_pred[:, 5 : num_classes + 5], 1) |
|
np_class_pred = np.argmax(np_image_pred[:, 5 : num_classes + 5], 1) |
|
np_class_conf = np.expand_dims(np_class_conf, axis=1) |
|
np_class_pred = np.expand_dims(np_class_pred, axis=1) |
|
np_mask_pred = np_image_pred[:, 5 + num_classes :] |
|
np_detections = np.append( |
|
np.append( |
|
np.append(np_image_pred[:, :5], np_class_conf, axis=1), |
|
np_class_pred, |
|
axis=1, |
|
), |
|
np_mask_pred, |
|
axis=1, |
|
) |
|
|
|
np_unique_labels = np.unique(np_detections[:, 6]) |
|
|
|
if class_agnostic: |
|
np_detections_class = sorted( |
|
np_detections, key=lambda row: row[4], reverse=True |
|
) |
|
filtered_predictions.extend( |
|
non_max_suppression_fast(np.array(np_detections_class), iou_thresh) |
|
) |
|
else: |
|
for c in np_unique_labels: |
|
np_detections_class = np_detections[np_detections[:, 6] == c] |
|
np_detections_class = sorted( |
|
np_detections_class, key=lambda row: row[4], reverse=True |
|
) |
|
filtered_predictions.extend( |
|
non_max_suppression_fast(np.array(np_detections_class), iou_thresh) |
|
) |
|
filtered_predictions = sorted( |
|
filtered_predictions, key=lambda row: row[4], reverse=True |
|
) |
|
batch_predictions.append(filtered_predictions[:max_detections]) |
|
return batch_predictions |
|
|
|
|
|
|
|
def non_max_suppression_fast(boxes, overlapThresh): |
|
"""Applies non-maximum suppression to bounding boxes. |
|
|
|
Args: |
|
boxes (np.ndarray): Array of bounding boxes with confidence scores. |
|
overlapThresh (float): Overlap threshold for suppression. |
|
|
|
Returns: |
|
list: List of bounding boxes after non-maximum suppression. |
|
""" |
|
|
|
if len(boxes) == 0: |
|
return [] |
|
|
|
|
|
if boxes.dtype.kind == "i": |
|
boxes = boxes.astype("float") |
|
|
|
pick = [] |
|
|
|
x1 = boxes[:, 0] |
|
y1 = boxes[:, 1] |
|
x2 = boxes[:, 2] |
|
y2 = boxes[:, 3] |
|
conf = boxes[:, 4] |
|
|
|
|
|
area = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
idxs = np.argsort(conf) |
|
|
|
|
|
while len(idxs) > 0: |
|
|
|
|
|
last = len(idxs) - 1 |
|
i = idxs[last] |
|
pick.append(i) |
|
|
|
|
|
|
|
xx1 = np.maximum(x1[i], x1[idxs[:last]]) |
|
yy1 = np.maximum(y1[i], y1[idxs[:last]]) |
|
xx2 = np.minimum(x2[i], x2[idxs[:last]]) |
|
yy2 = np.minimum(y2[i], y2[idxs[:last]]) |
|
|
|
w = np.maximum(0, xx2 - xx1 + 1) |
|
h = np.maximum(0, yy2 - yy1 + 1) |
|
|
|
overlap = (w * h) / area[idxs[:last]] |
|
|
|
idxs = np.delete( |
|
idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])) |
|
) |
|
|
|
|
|
return boxes[pick].astype("float") |
|
|