|
import base64 |
|
from typing import Any, Dict, List, Optional, Union |
|
from uuid import uuid4 |
|
|
|
from pydantic import BaseModel, ConfigDict, Field, ValidationError, field_serializer |
|
|
|
|
|
class ObjectDetectionPrediction(BaseModel): |
|
"""Object Detection prediction. |
|
|
|
Attributes: |
|
x (float): The center x-axis pixel coordinate of the prediction. |
|
y (float): The center y-axis pixel coordinate of the prediction. |
|
width (float): The width of the prediction bounding box in number of pixels. |
|
height (float): The height of the prediction bounding box in number of pixels. |
|
confidence (float): The detection confidence as a fraction between 0 and 1. |
|
class_name (str): The predicted class label. |
|
class_confidence (Union[float, None]): The class label confidence as a fraction between 0 and 1. |
|
class_id (int): The class id of the prediction |
|
""" |
|
|
|
x: float = Field(description="The center x-axis pixel coordinate of the prediction") |
|
y: float = Field(description="The center y-axis pixel coordinate of the prediction") |
|
width: float = Field( |
|
description="The width of the prediction bounding box in number of pixels" |
|
) |
|
height: float = Field( |
|
description="The height of the prediction bounding box in number of pixels" |
|
) |
|
confidence: float = Field( |
|
description="The detection confidence as a fraction between 0 and 1" |
|
) |
|
class_name: str = Field(alias="class", description="The predicted class label") |
|
|
|
class_confidence: Union[float, None] = Field( |
|
None, description="The class label confidence as a fraction between 0 and 1" |
|
) |
|
class_id: int = Field(description="The class id of the prediction") |
|
tracker_id: Optional[int] = Field( |
|
description="The tracker id of the prediction if tracking is enabled", |
|
default=None, |
|
) |
|
detection_id: str = Field( |
|
description="Unique identifier of detection", |
|
default_factory=lambda: str(uuid4()), |
|
) |
|
parent_id: Optional[str] = Field( |
|
description="Identifier of parent image region. Useful when stack of detection-models is in use to refer the RoI being the input to inference", |
|
default=None, |
|
) |
|
|
|
|
|
class Point(BaseModel): |
|
"""Point coordinates. |
|
|
|
Attributes: |
|
x (float): The x-axis pixel coordinate of the point. |
|
y (float): The y-axis pixel coordinate of the point. |
|
""" |
|
|
|
x: float = Field(description="The x-axis pixel coordinate of the point") |
|
y: float = Field(description="The y-axis pixel coordinate of the point") |
|
|
|
|
|
class Point3D(Point): |
|
"""3D Point coordinates. |
|
|
|
Attributes: |
|
z (float): The z-axis pixel coordinate of the point. |
|
""" |
|
|
|
z: float = Field(description="The z-axis pixel coordinate of the point") |
|
|
|
|
|
class InstanceSegmentationPrediction(BaseModel): |
|
"""Instance Segmentation prediction. |
|
|
|
Attributes: |
|
x (float): The center x-axis pixel coordinate of the prediction. |
|
y (float): The center y-axis pixel coordinate of the prediction. |
|
width (float): The width of the prediction bounding box in number of pixels. |
|
height (float): The height of the prediction bounding box in number of pixels. |
|
confidence (float): The detection confidence as a fraction between 0 and 1. |
|
class_name (str): The predicted class label. |
|
class_confidence (Union[float, None]): The class label confidence as a fraction between 0 and 1. |
|
points (List[Point]): The list of points that make up the instance polygon. |
|
class_id: int = Field(description="The class id of the prediction") |
|
""" |
|
|
|
x: float = Field(description="The center x-axis pixel coordinate of the prediction") |
|
y: float = Field(description="The center y-axis pixel coordinate of the prediction") |
|
width: float = Field( |
|
description="The width of the prediction bounding box in number of pixels" |
|
) |
|
height: float = Field( |
|
description="The height of the prediction bounding box in number of pixels" |
|
) |
|
confidence: float = Field( |
|
description="The detection confidence as a fraction between 0 and 1" |
|
) |
|
class_name: str = Field(alias="class", description="The predicted class label") |
|
|
|
class_confidence: Union[float, None] = Field( |
|
None, description="The class label confidence as a fraction between 0 and 1" |
|
) |
|
points: List[Point] = Field( |
|
description="The list of points that make up the instance polygon" |
|
) |
|
class_id: int = Field(description="The class id of the prediction") |
|
detection_id: str = Field( |
|
description="Unique identifier of detection", |
|
default_factory=lambda: str(uuid4()), |
|
) |
|
parent_id: Optional[str] = Field( |
|
description="Identifier of parent image region. Useful when stack of detection-models is in use to refer the RoI being the input to inference", |
|
default=None, |
|
) |
|
|
|
|
|
class ClassificationPrediction(BaseModel): |
|
"""Classification prediction. |
|
|
|
Attributes: |
|
class_name (str): The predicted class label. |
|
class_id (int): Numeric ID associated with the class label. |
|
confidence (float): The class label confidence as a fraction between 0 and 1. |
|
""" |
|
|
|
class_name: str = Field(alias="class", description="The predicted class label") |
|
class_id: int = Field(description="Numeric ID associated with the class label") |
|
confidence: float = Field( |
|
description="The class label confidence as a fraction between 0 and 1" |
|
) |
|
|
|
|
|
class MultiLabelClassificationPrediction(BaseModel): |
|
"""Multi-label Classification prediction. |
|
|
|
Attributes: |
|
confidence (float): The class label confidence as a fraction between 0 and 1. |
|
""" |
|
|
|
confidence: float = Field( |
|
description="The class label confidence as a fraction between 0 and 1" |
|
) |
|
|
|
|
|
class InferenceResponseImage(BaseModel): |
|
"""Inference response image information. |
|
|
|
Attributes: |
|
width (int): The original width of the image used in inference. |
|
height (int): The original height of the image used in inference. |
|
""" |
|
|
|
width: int = Field(description="The original width of the image used in inference") |
|
height: int = Field( |
|
description="The original height of the image used in inference" |
|
) |
|
|
|
|
|
class InferenceResponse(BaseModel): |
|
"""Base inference response. |
|
|
|
Attributes: |
|
frame_id (Optional[int]): The frame id of the image used in inference if the input was a video. |
|
time (Optional[float]): The time in seconds it took to produce the predictions including image preprocessing. |
|
""" |
|
|
|
model_config = ConfigDict(protected_namespaces=()) |
|
frame_id: Optional[int] = Field( |
|
default=None, |
|
description="The frame id of the image used in inference if the input was a video", |
|
) |
|
time: Optional[float] = Field( |
|
default=None, |
|
description="The time in seconds it took to produce the predictions including image preprocessing", |
|
) |
|
|
|
|
|
class CvInferenceResponse(InferenceResponse): |
|
"""Computer Vision inference response. |
|
|
|
Attributes: |
|
image (Union[List[inference.core.entities.responses.inference.InferenceResponseImage], inference.core.entities.responses.inference.InferenceResponseImage]): Image(s) used in inference. |
|
""" |
|
|
|
image: Union[List[InferenceResponseImage], InferenceResponseImage] |
|
|
|
|
|
class WithVisualizationResponse(BaseModel): |
|
"""Response with visualization. |
|
|
|
Attributes: |
|
visualization (Optional[Any]): Base64 encoded string containing prediction visualization image data. |
|
""" |
|
|
|
visualization: Optional[Any] = Field( |
|
default=None, |
|
description="Base64 encoded string containing prediction visualization image data", |
|
) |
|
|
|
@field_serializer("visualization", when_used="json") |
|
def serialize_visualisation(self, visualization: Optional[Any]) -> Optional[str]: |
|
if visualization is None: |
|
return None |
|
return base64.b64encode(visualization).decode("utf-8") |
|
|
|
|
|
class ObjectDetectionInferenceResponse(CvInferenceResponse, WithVisualizationResponse): |
|
"""Object Detection inference response. |
|
|
|
Attributes: |
|
predictions (List[inference.core.entities.responses.inference.ObjectDetectionPrediction]): List of object detection predictions. |
|
""" |
|
|
|
predictions: List[ObjectDetectionPrediction] |
|
|
|
|
|
class Keypoint(Point): |
|
confidence: float = Field( |
|
description="Model confidence regarding keypoint visibility." |
|
) |
|
class_id: int = Field(description="Identifier of keypoint.") |
|
class_name: str = Field(field="class", description="Type of keypoint.") |
|
|
|
|
|
class KeypointsPrediction(ObjectDetectionPrediction): |
|
keypoints: List[Keypoint] |
|
|
|
|
|
class KeypointsDetectionInferenceResponse( |
|
CvInferenceResponse, WithVisualizationResponse |
|
): |
|
predictions: List[KeypointsPrediction] |
|
|
|
|
|
class InstanceSegmentationInferenceResponse( |
|
CvInferenceResponse, WithVisualizationResponse |
|
): |
|
"""Instance Segmentation inference response. |
|
|
|
Attributes: |
|
predictions (List[inference.core.entities.responses.inference.InstanceSegmentationPrediction]): List of instance segmentation predictions. |
|
""" |
|
|
|
predictions: List[InstanceSegmentationPrediction] |
|
|
|
|
|
class ClassificationInferenceResponse(CvInferenceResponse, WithVisualizationResponse): |
|
"""Classification inference response. |
|
|
|
Attributes: |
|
predictions (List[inference.core.entities.responses.inference.ClassificationPrediction]): List of classification predictions. |
|
top (str): The top predicted class label. |
|
confidence (float): The confidence of the top predicted class label. |
|
""" |
|
|
|
predictions: List[ClassificationPrediction] |
|
top: str = Field(description="The top predicted class label") |
|
confidence: float = Field( |
|
description="The confidence of the top predicted class label" |
|
) |
|
parent_id: Optional[str] = Field( |
|
description="Identifier of parent image region. Useful when stack of detection-models is in use to refer the RoI being the input to inference", |
|
default=None, |
|
) |
|
|
|
|
|
class MultiLabelClassificationInferenceResponse( |
|
CvInferenceResponse, WithVisualizationResponse |
|
): |
|
"""Multi-label Classification inference response. |
|
|
|
Attributes: |
|
predictions (Dict[str, inference.core.entities.responses.inference.MultiLabelClassificationPrediction]): Dictionary of multi-label classification predictions. |
|
predicted_classes (List[str]): The list of predicted classes. |
|
""" |
|
|
|
predictions: Dict[str, MultiLabelClassificationPrediction] |
|
predicted_classes: List[str] = Field(description="The list of predicted classes") |
|
parent_id: Optional[str] = Field( |
|
description="Identifier of parent image region. Useful when stack of detection-models is in use to refer the RoI being the input to inference", |
|
default=None, |
|
) |
|
|
|
|
|
class FaceDetectionPrediction(ObjectDetectionPrediction): |
|
"""Face Detection prediction. |
|
|
|
Attributes: |
|
class_name (str): fixed value "face". |
|
landmarks (Union[List[inference.core.entities.responses.inference.Point], List[inference.core.entities.responses.inference.Point3D]]): The detected face landmarks. |
|
""" |
|
|
|
class_id: Optional[int] = Field( |
|
description="The class id of the prediction", default=0 |
|
) |
|
class_name: str = Field( |
|
alias="class", default="face", description="The predicted class label" |
|
) |
|
landmarks: Union[List[Point], List[Point3D]] |
|
|
|
|
|
def response_from_type(model_type, response_dict): |
|
if model_type == "classification": |
|
try: |
|
return ClassificationInferenceResponse(**response_dict) |
|
except ValidationError: |
|
return MultiLabelClassificationInferenceResponse(**response_dict) |
|
elif model_type == "instance-segmentation": |
|
return InstanceSegmentationInferenceResponse(**response_dict) |
|
elif model_type == "object-detection": |
|
return ObjectDetectionInferenceResponse(**response_dict) |
|
else: |
|
raise ValueError(f"Uknown task type {model_type}") |
|
|
|
|
|
class StubResponse(InferenceResponse, WithVisualizationResponse): |
|
is_stub: bool = Field(description="Field to mark prediction type as stub") |
|
model_id: str = Field(description="Identifier of a model stub that was called") |
|
task_type: str = Field(description="Task type of the project") |
|
|