|
import itertools |
|
import statistics |
|
from collections import Counter, defaultdict |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Any, Callable, Dict, Generator, List, Optional, Set, Tuple, Union |
|
from uuid import uuid4 |
|
|
|
import numpy as np |
|
from fastapi import BackgroundTasks |
|
|
|
from inference.core.managers.base import ModelManager |
|
from inference.core.utils.image_utils import ImageType, load_image |
|
from inference.enterprise.workflows.complier.entities import StepExecutionMode |
|
from inference.enterprise.workflows.complier.steps_executors.active_learning_middlewares import ( |
|
WorkflowsActiveLearningMiddleware, |
|
) |
|
from inference.enterprise.workflows.complier.steps_executors.constants import ( |
|
CENTER_X_KEY, |
|
CENTER_Y_KEY, |
|
DETECTION_ID_KEY, |
|
HEIGHT_KEY, |
|
IMAGE_TYPE_KEY, |
|
IMAGE_VALUE_KEY, |
|
ORIGIN_COORDINATES_KEY, |
|
ORIGIN_SIZE_KEY, |
|
PARENT_ID_KEY, |
|
WIDTH_KEY, |
|
) |
|
from inference.enterprise.workflows.complier.steps_executors.types import ( |
|
NextStepReference, |
|
OutputsLookup, |
|
) |
|
from inference.enterprise.workflows.complier.steps_executors.utils import ( |
|
get_image, |
|
resolve_parameter, |
|
) |
|
from inference.enterprise.workflows.complier.utils import ( |
|
construct_selector_pointing_step_output, |
|
construct_step_selector, |
|
) |
|
from inference.enterprise.workflows.entities.steps import ( |
|
AbsoluteStaticCrop, |
|
ActiveLearningDataCollector, |
|
AggregationMode, |
|
BinaryOperator, |
|
CompoundDetectionFilterDefinition, |
|
Condition, |
|
Crop, |
|
DetectionFilter, |
|
DetectionFilterDefinition, |
|
DetectionOffset, |
|
DetectionsConsensus, |
|
Operator, |
|
RelativeStaticCrop, |
|
) |
|
from inference.enterprise.workflows.entities.validators import get_last_selector_chunk |
|
from inference.enterprise.workflows.errors import ExecutionGraphError |
|
|
|
OPERATORS = { |
|
Operator.EQUAL: lambda a, b: a == b, |
|
Operator.NOT_EQUAL: lambda a, b: a != b, |
|
Operator.LOWER_THAN: lambda a, b: a < b, |
|
Operator.GREATER_THAN: lambda a, b: a > b, |
|
Operator.LOWER_OR_EQUAL_THAN: lambda a, b: a <= b, |
|
Operator.GREATER_OR_EQUAL_THAN: lambda a, b: a >= b, |
|
Operator.IN: lambda a, b: a in b, |
|
} |
|
|
|
BINARY_OPERATORS = { |
|
BinaryOperator.AND: lambda a, b: a and b, |
|
BinaryOperator.OR: lambda a, b: a or b, |
|
} |
|
|
|
AGGREGATION_MODE2FIELD_AGGREGATOR = { |
|
AggregationMode.MAX: max, |
|
AggregationMode.MIN: min, |
|
AggregationMode.AVERAGE: statistics.mean, |
|
} |
|
|
|
|
|
async def run_crop_step( |
|
step: Crop, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
image = get_image( |
|
step=step, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
detections = resolve_parameter( |
|
selector_or_value=step.detections, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
decoded_images = [load_image(e) for e in image] |
|
decoded_images = [ |
|
i[0] if i[1] is True else i[0][:, :, ::-1] for i in decoded_images |
|
] |
|
origin_image_shape = extract_origin_size_from_images( |
|
input_images=image, |
|
decoded_images=decoded_images, |
|
) |
|
crops = list( |
|
itertools.chain.from_iterable( |
|
crop_image(image=i, detections=d, origin_size=o) |
|
for i, d, o in zip(decoded_images, detections, origin_image_shape) |
|
) |
|
) |
|
parent_ids = [c[PARENT_ID_KEY] for c in crops] |
|
outputs_lookup[construct_step_selector(step_name=step.name)] = { |
|
"crops": crops, |
|
PARENT_ID_KEY: parent_ids, |
|
} |
|
return None, outputs_lookup |
|
|
|
|
|
def crop_image( |
|
image: np.ndarray, |
|
detections: List[dict], |
|
origin_size: dict, |
|
) -> List[Dict[str, Union[str, np.ndarray]]]: |
|
crops = [] |
|
for detection in detections: |
|
x_min, y_min, x_max, y_max = detection_to_xyxy(detection=detection) |
|
cropped_image = image[y_min:y_max, x_min:x_max] |
|
crops.append( |
|
{ |
|
IMAGE_TYPE_KEY: ImageType.NUMPY_OBJECT.value, |
|
IMAGE_VALUE_KEY: cropped_image, |
|
PARENT_ID_KEY: detection[DETECTION_ID_KEY], |
|
ORIGIN_COORDINATES_KEY: { |
|
CENTER_X_KEY: detection["x"], |
|
CENTER_Y_KEY: detection["y"], |
|
ORIGIN_SIZE_KEY: origin_size, |
|
}, |
|
} |
|
) |
|
return crops |
|
|
|
|
|
async def run_condition_step( |
|
step: Condition, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
left_value = resolve_parameter( |
|
selector_or_value=step.left, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
right_value = resolve_parameter( |
|
selector_or_value=step.right, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
evaluation_result = OPERATORS[step.operator](left_value, right_value) |
|
next_step = step.step_if_true if evaluation_result else step.step_if_false |
|
return next_step, outputs_lookup |
|
|
|
|
|
async def run_detection_filter( |
|
step: DetectionFilter, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
predictions = resolve_parameter( |
|
selector_or_value=step.predictions, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
images_meta_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="image", |
|
) |
|
images_meta = resolve_parameter( |
|
selector_or_value=images_meta_selector, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
prediction_type_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="prediction_type", |
|
) |
|
predictions_type = resolve_parameter( |
|
selector_or_value=prediction_type_selector, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
filter_callable = build_filter_callable(definition=step.filter_definition) |
|
result_detections, result_parent_id = [], [] |
|
for prediction in predictions: |
|
filtered_predictions = [deepcopy(p) for p in prediction if filter_callable(p)] |
|
result_detections.append(filtered_predictions) |
|
result_parent_id.append([p[PARENT_ID_KEY] for p in filtered_predictions]) |
|
step_selector = construct_step_selector(step_name=step.name) |
|
outputs_lookup[step_selector] = [ |
|
{"predictions": d, PARENT_ID_KEY: p, "image": i, "prediction_type": pt} |
|
for d, p, i, pt in zip( |
|
result_detections, result_parent_id, images_meta, predictions_type |
|
) |
|
] |
|
return None, outputs_lookup |
|
|
|
|
|
def build_filter_callable( |
|
definition: Union[DetectionFilterDefinition, CompoundDetectionFilterDefinition], |
|
) -> Callable[[dict], bool]: |
|
if definition.type == "CompoundDetectionFilterDefinition": |
|
left_callable = build_filter_callable(definition=definition.left) |
|
right_callable = build_filter_callable(definition=definition.right) |
|
binary_operator = BINARY_OPERATORS[definition.operator] |
|
return lambda e: binary_operator(left_callable(e), right_callable(e)) |
|
if definition.type == "DetectionFilterDefinition": |
|
operator = OPERATORS[definition.operator] |
|
return lambda e: operator(e[definition.field_name], definition.reference_value) |
|
raise ExecutionGraphError( |
|
f"Detected filter definition of type {definition.type} which is unknown" |
|
) |
|
|
|
|
|
async def run_detection_offset_step( |
|
step: DetectionOffset, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
detections = resolve_parameter( |
|
selector_or_value=step.predictions, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
images_meta_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="image", |
|
) |
|
images_meta = resolve_parameter( |
|
selector_or_value=images_meta_selector, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
prediction_type_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="prediction_type", |
|
) |
|
predictions_type = resolve_parameter( |
|
selector_or_value=prediction_type_selector, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
offset_x = resolve_parameter( |
|
selector_or_value=step.offset_x, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
offset_y = resolve_parameter( |
|
selector_or_value=step.offset_y, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
result_detections, result_parent_id = [], [] |
|
for detection in detections: |
|
offset_detections = [ |
|
offset_detection(detection=d, offset_x=offset_x, offset_y=offset_y) |
|
for d in detection |
|
] |
|
result_detections.append(offset_detections) |
|
result_parent_id.append([d[PARENT_ID_KEY] for d in offset_detections]) |
|
step_selector = construct_step_selector(step_name=step.name) |
|
outputs_lookup[step_selector] = [ |
|
{"predictions": d, PARENT_ID_KEY: p, "image": i, "prediction_type": pt} |
|
for d, p, i, pt in zip( |
|
result_detections, result_parent_id, images_meta, predictions_type |
|
) |
|
] |
|
return None, outputs_lookup |
|
|
|
|
|
def offset_detection( |
|
detection: Dict[str, Any], offset_x: int, offset_y: int |
|
) -> Dict[str, Any]: |
|
detection_copy = deepcopy(detection) |
|
detection_copy[WIDTH_KEY] += round(offset_x) |
|
detection_copy[HEIGHT_KEY] += round(offset_y) |
|
detection_copy[PARENT_ID_KEY] = detection_copy[DETECTION_ID_KEY] |
|
detection_copy[DETECTION_ID_KEY] = str(uuid4()) |
|
return detection_copy |
|
|
|
|
|
async def run_static_crop_step( |
|
step: Union[AbsoluteStaticCrop, RelativeStaticCrop], |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
image = get_image( |
|
step=step, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
decoded_images = [load_image(e) for e in image] |
|
decoded_images = [ |
|
i[0] if i[1] is True else i[0][:, :, ::-1] for i in decoded_images |
|
] |
|
origin_image_shape = extract_origin_size_from_images( |
|
input_images=image, |
|
decoded_images=decoded_images, |
|
) |
|
crops = [ |
|
take_static_crop( |
|
image=i, |
|
crop=step, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
origin_size=size, |
|
) |
|
for i, size in zip(decoded_images, origin_image_shape) |
|
] |
|
parent_ids = [c[PARENT_ID_KEY] for c in crops] |
|
outputs_lookup[construct_step_selector(step_name=step.name)] = { |
|
"crops": crops, |
|
PARENT_ID_KEY: parent_ids, |
|
} |
|
return None, outputs_lookup |
|
|
|
|
|
def extract_origin_size_from_images( |
|
input_images: List[Union[dict, np.ndarray]], |
|
decoded_images: List[np.ndarray], |
|
) -> List[Dict[str, int]]: |
|
result = [] |
|
for input_image, decoded_image in zip(input_images, decoded_images): |
|
if ( |
|
issubclass(type(input_image), dict) |
|
and ORIGIN_COORDINATES_KEY in input_image |
|
): |
|
result.append(input_image[ORIGIN_COORDINATES_KEY][ORIGIN_SIZE_KEY]) |
|
else: |
|
result.append( |
|
{HEIGHT_KEY: decoded_image.shape[0], WIDTH_KEY: decoded_image.shape[1]} |
|
) |
|
return result |
|
|
|
|
|
def take_static_crop( |
|
image: np.ndarray, |
|
crop: Union[AbsoluteStaticCrop, RelativeStaticCrop], |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
origin_size: dict, |
|
) -> Dict[str, Union[str, np.ndarray]]: |
|
resolve_parameter_closure = partial( |
|
resolve_parameter, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
x_center = resolve_parameter_closure(crop.x_center) |
|
y_center = resolve_parameter_closure(crop.y_center) |
|
width = resolve_parameter_closure(crop.width) |
|
height = resolve_parameter_closure(crop.height) |
|
if crop.type == "RelativeStaticCrop": |
|
x_center = round(image.shape[1] * x_center) |
|
y_center = round(image.shape[0] * y_center) |
|
width = round(image.shape[1] * width) |
|
height = round(image.shape[0] * height) |
|
x_min = round(x_center - width / 2) |
|
y_min = round(y_center - height / 2) |
|
x_max = round(x_min + width) |
|
y_max = round(y_min + height) |
|
cropped_image = image[y_min:y_max, x_min:x_max] |
|
return { |
|
IMAGE_TYPE_KEY: ImageType.NUMPY_OBJECT.value, |
|
IMAGE_VALUE_KEY: cropped_image, |
|
PARENT_ID_KEY: f"$steps.{crop.name}", |
|
ORIGIN_COORDINATES_KEY: { |
|
CENTER_X_KEY: x_center, |
|
CENTER_Y_KEY: y_center, |
|
ORIGIN_SIZE_KEY: origin_size, |
|
}, |
|
} |
|
|
|
|
|
async def run_detections_consensus_step( |
|
step: DetectionsConsensus, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
resolve_parameter_closure = partial( |
|
resolve_parameter, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
all_predictions = [resolve_parameter_closure(p) for p in step.predictions] |
|
|
|
if len(all_predictions) < 1: |
|
raise ExecutionGraphError( |
|
f"Consensus step requires at least one source of predictions." |
|
) |
|
batch_sizes = get_and_validate_batch_sizes( |
|
all_predictions=all_predictions, |
|
step_name=step.name, |
|
) |
|
images_meta_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions[0], |
|
new_output="image", |
|
) |
|
images_meta = resolve_parameter_closure(images_meta_selector) |
|
batch_size = batch_sizes[0] |
|
results = [] |
|
for batch_index in range(batch_size): |
|
batch_element_predictions = [e[batch_index] for e in all_predictions] |
|
( |
|
parent_id, |
|
object_present, |
|
presence_confidence, |
|
consensus_detections, |
|
) = resolve_batch_consensus( |
|
predictions=batch_element_predictions, |
|
required_votes=resolve_parameter_closure(step.required_votes), |
|
class_aware=resolve_parameter_closure(step.class_aware), |
|
iou_threshold=resolve_parameter_closure(step.iou_threshold), |
|
confidence=resolve_parameter_closure(step.confidence), |
|
classes_to_consider=resolve_parameter_closure(step.classes_to_consider), |
|
required_objects=resolve_parameter_closure(step.required_objects), |
|
presence_confidence_aggregation=step.presence_confidence_aggregation, |
|
detections_merge_confidence_aggregation=step.detections_merge_confidence_aggregation, |
|
detections_merge_coordinates_aggregation=step.detections_merge_coordinates_aggregation, |
|
) |
|
results.append( |
|
{ |
|
"predictions": consensus_detections, |
|
"parent_id": parent_id, |
|
"object_present": object_present, |
|
"presence_confidence": presence_confidence, |
|
"image": images_meta[batch_index], |
|
"prediction_type": "object-detection", |
|
} |
|
) |
|
outputs_lookup[construct_step_selector(step_name=step.name)] = results |
|
return None, outputs_lookup |
|
|
|
|
|
def get_and_validate_batch_sizes( |
|
all_predictions: List[List[List[dict]]], |
|
step_name: str, |
|
) -> List[int]: |
|
batch_sizes = get_predictions_batch_sizes(all_predictions=all_predictions) |
|
if not all_batch_sizes_equal(batch_sizes=batch_sizes): |
|
raise ExecutionGraphError( |
|
f"Detected missmatch of input dimensions in step: {step_name}" |
|
) |
|
return batch_sizes |
|
|
|
|
|
def get_predictions_batch_sizes(all_predictions: List[List[List[dict]]]) -> List[int]: |
|
return [len(predictions) for predictions in all_predictions] |
|
|
|
|
|
def all_batch_sizes_equal(batch_sizes: List[int]) -> bool: |
|
if len(batch_sizes) == 0: |
|
return True |
|
reference = batch_sizes[0] |
|
return all(e == reference for e in batch_sizes) |
|
|
|
|
|
def resolve_batch_consensus( |
|
predictions: List[List[dict]], |
|
required_votes: int, |
|
class_aware: bool, |
|
iou_threshold: float, |
|
confidence: float, |
|
classes_to_consider: Optional[List[str]], |
|
required_objects: Optional[Union[int, Dict[str, int]]], |
|
presence_confidence_aggregation: AggregationMode, |
|
detections_merge_confidence_aggregation: AggregationMode, |
|
detections_merge_coordinates_aggregation: AggregationMode, |
|
) -> Tuple[str, bool, Dict[str, float], List[dict]]: |
|
if does_not_detected_objects_in_any_source(predictions=predictions): |
|
return "undefined", False, {}, [] |
|
parent_id = get_parent_id_of_predictions_from_different_sources( |
|
predictions=predictions, |
|
) |
|
predictions = filter_predictions( |
|
predictions=predictions, |
|
classes_to_consider=classes_to_consider, |
|
) |
|
detections_already_considered = set() |
|
consensus_detections = [] |
|
for source_id, detection in enumerate_detections(predictions=predictions): |
|
( |
|
consensus_detections_update, |
|
detections_already_considered, |
|
) = get_consensus_for_single_detection( |
|
detection=detection, |
|
source_id=source_id, |
|
predictions=predictions, |
|
iou_threshold=iou_threshold, |
|
class_aware=class_aware, |
|
required_votes=required_votes, |
|
confidence=confidence, |
|
detections_merge_confidence_aggregation=detections_merge_confidence_aggregation, |
|
detections_merge_coordinates_aggregation=detections_merge_coordinates_aggregation, |
|
detections_already_considered=detections_already_considered, |
|
) |
|
consensus_detections += consensus_detections_update |
|
( |
|
object_present, |
|
presence_confidence, |
|
) = check_objects_presence_in_consensus_predictions( |
|
consensus_detections=consensus_detections, |
|
aggregation_mode=presence_confidence_aggregation, |
|
class_aware=class_aware, |
|
required_objects=required_objects, |
|
) |
|
return ( |
|
parent_id, |
|
object_present, |
|
presence_confidence, |
|
consensus_detections, |
|
) |
|
|
|
|
|
def get_consensus_for_single_detection( |
|
detection: dict, |
|
source_id: int, |
|
predictions: List[List[dict]], |
|
iou_threshold: float, |
|
class_aware: bool, |
|
required_votes: int, |
|
confidence: float, |
|
detections_merge_confidence_aggregation: AggregationMode, |
|
detections_merge_coordinates_aggregation: AggregationMode, |
|
detections_already_considered: Set[str], |
|
) -> Tuple[List[dict], Set[str]]: |
|
if detection["detection_id"] in detections_already_considered: |
|
return ([], detections_already_considered) |
|
consensus_detections = [] |
|
detections_with_max_overlap = ( |
|
get_detections_from_different_sources_with_max_overlap( |
|
detection=detection, |
|
source=source_id, |
|
predictions=predictions, |
|
iou_threshold=iou_threshold, |
|
class_aware=class_aware, |
|
detections_already_considered=detections_already_considered, |
|
) |
|
) |
|
if len(detections_with_max_overlap) < (required_votes - 1): |
|
return consensus_detections, detections_already_considered |
|
detections_to_merge = [detection] + [ |
|
matched_value[0] for matched_value in detections_with_max_overlap.values() |
|
] |
|
merged_detection = merge_detections( |
|
detections=detections_to_merge, |
|
confidence_aggregation_mode=detections_merge_confidence_aggregation, |
|
boxes_aggregation_mode=detections_merge_coordinates_aggregation, |
|
) |
|
if merged_detection["confidence"] < confidence: |
|
return consensus_detections, detections_already_considered |
|
consensus_detections.append(merged_detection) |
|
detections_already_considered.add(detection[DETECTION_ID_KEY]) |
|
for matched_value in detections_with_max_overlap.values(): |
|
detections_already_considered.add(matched_value[0][DETECTION_ID_KEY]) |
|
return consensus_detections, detections_already_considered |
|
|
|
|
|
def check_objects_presence_in_consensus_predictions( |
|
consensus_detections: List[dict], |
|
class_aware: bool, |
|
aggregation_mode: AggregationMode, |
|
required_objects: Optional[Union[int, Dict[str, int]]], |
|
) -> Tuple[bool, Dict[str, float]]: |
|
if len(consensus_detections) == 0: |
|
return False, {} |
|
if required_objects is None: |
|
required_objects = 0 |
|
if issubclass(type(required_objects), dict) and not class_aware: |
|
required_objects = sum(required_objects.values()) |
|
if ( |
|
issubclass(type(required_objects), int) |
|
and len(consensus_detections) < required_objects |
|
): |
|
return False, {} |
|
if not class_aware: |
|
aggregated_confidence = aggregate_field_values( |
|
detections=consensus_detections, |
|
field="confidence", |
|
aggregation_mode=aggregation_mode, |
|
) |
|
return True, {"any_object": aggregated_confidence} |
|
class2detections = defaultdict(list) |
|
for detection in consensus_detections: |
|
class2detections[detection["class"]].append(detection) |
|
if issubclass(type(required_objects), dict): |
|
for requested_class, required_objects_count in required_objects.items(): |
|
if len(class2detections[requested_class]) < required_objects_count: |
|
return False, {} |
|
class2confidence = { |
|
class_name: aggregate_field_values( |
|
detections=class_detections, |
|
field="confidence", |
|
aggregation_mode=aggregation_mode, |
|
) |
|
for class_name, class_detections in class2detections.items() |
|
} |
|
return True, class2confidence |
|
|
|
|
|
def does_not_detected_objects_in_any_source(predictions: List[List[dict]]) -> bool: |
|
return all(len(p) == 0 for p in predictions) |
|
|
|
|
|
def get_parent_id_of_predictions_from_different_sources( |
|
predictions: List[List[dict]], |
|
) -> str: |
|
encountered_parent_ids = { |
|
p[PARENT_ID_KEY] for prediction_source in predictions for p in prediction_source |
|
} |
|
if len(encountered_parent_ids) > 1: |
|
raise ExecutionGraphError( |
|
f"Missmatch in predictions - while executing consensus step, " |
|
f"in equivalent batches, detections are assigned different parent " |
|
f"identifiers, whereas consensus can only be applied for predictions " |
|
f"made against the same input." |
|
) |
|
return list(encountered_parent_ids)[0] |
|
|
|
|
|
def filter_predictions( |
|
predictions: List[List[dict]], |
|
classes_to_consider: Optional[List[str]], |
|
) -> List[List[dict]]: |
|
if classes_to_consider is None: |
|
return predictions |
|
classes_to_consider = set(classes_to_consider) |
|
return [ |
|
[ |
|
detection |
|
for detection in detections |
|
if detection["class"] in classes_to_consider |
|
] |
|
for detections in predictions |
|
] |
|
|
|
|
|
def get_detections_from_different_sources_with_max_overlap( |
|
detection: dict, |
|
source: int, |
|
predictions: List[List[dict]], |
|
iou_threshold: float, |
|
class_aware: bool, |
|
detections_already_considered: Set[str], |
|
) -> Dict[int, Tuple[dict, float]]: |
|
current_max_overlap = {} |
|
for other_source, other_detection in enumerate_detections( |
|
predictions=predictions, |
|
excluded_source=source, |
|
): |
|
if other_detection[DETECTION_ID_KEY] in detections_already_considered: |
|
continue |
|
if class_aware and detection["class"] != other_detection["class"]: |
|
continue |
|
iou_value = calculate_iou( |
|
detection_a=detection, |
|
detection_b=other_detection, |
|
) |
|
if iou_value <= iou_threshold: |
|
continue |
|
if current_max_overlap.get(other_source) is None: |
|
current_max_overlap[other_source] = (other_detection, iou_value) |
|
if current_max_overlap[other_source][1] < iou_value: |
|
current_max_overlap[other_source] = (other_detection, iou_value) |
|
return current_max_overlap |
|
|
|
|
|
def enumerate_detections( |
|
predictions: List[List[dict]], |
|
excluded_source: Optional[int] = None, |
|
) -> Generator[Tuple[int, dict], None, None]: |
|
for source_id, detections in enumerate(predictions): |
|
if excluded_source is not None and excluded_source == source_id: |
|
continue |
|
for detection in detections: |
|
yield source_id, detection |
|
|
|
|
|
def calculate_iou(detection_a: dict, detection_b: dict) -> float: |
|
box_a = detection_to_xyxy(detection=detection_a) |
|
box_b = detection_to_xyxy(detection=detection_b) |
|
x_a = max(box_a[0], box_b[0]) |
|
y_a = max(box_a[1], box_b[1]) |
|
x_b = min(box_a[2], box_b[2]) |
|
y_b = min(box_a[3], box_b[3]) |
|
intersection = max(0, x_b - x_a) * max(0, y_b - y_a) |
|
bbox_a_area, bbox_b_area = get_detection_sizes( |
|
detections=[detection_a, detection_b] |
|
) |
|
union = float(bbox_a_area + bbox_b_area - intersection) |
|
if union == 0.0: |
|
return 0.0 |
|
return intersection / float(bbox_a_area + bbox_b_area - intersection) |
|
|
|
|
|
def detection_to_xyxy(detection: dict) -> Tuple[int, int, int, int]: |
|
x_min = round(detection["x"] - detection[WIDTH_KEY] / 2) |
|
y_min = round(detection["y"] - detection[HEIGHT_KEY] / 2) |
|
x_max = round(x_min + detection[WIDTH_KEY]) |
|
y_max = round(y_min + detection[HEIGHT_KEY]) |
|
return x_min, y_min, x_max, y_max |
|
|
|
|
|
def merge_detections( |
|
detections: List[dict], |
|
confidence_aggregation_mode: AggregationMode, |
|
boxes_aggregation_mode: AggregationMode, |
|
) -> dict: |
|
class_name, class_id = AGGREGATION_MODE2CLASS_SELECTOR[confidence_aggregation_mode]( |
|
detections |
|
) |
|
x, y, width, height = AGGREGATION_MODE2BOXES_AGGREGATOR[boxes_aggregation_mode]( |
|
detections |
|
) |
|
return { |
|
PARENT_ID_KEY: detections[0][PARENT_ID_KEY], |
|
DETECTION_ID_KEY: f"{uuid4()}", |
|
"class": class_name, |
|
"class_id": class_id, |
|
"confidence": aggregate_field_values( |
|
detections=detections, |
|
field="confidence", |
|
aggregation_mode=confidence_aggregation_mode, |
|
), |
|
"x": x, |
|
"y": y, |
|
"width": width, |
|
"height": height, |
|
} |
|
|
|
|
|
def get_majority_class(detections: List[dict]) -> Tuple[str, int]: |
|
class_counts = Counter(d["class"] for d in detections) |
|
most_common_class_name = class_counts.most_common(1)[0][0] |
|
class_id = [ |
|
d["class_id"] for d in detections if d["class"] == most_common_class_name |
|
][0] |
|
return most_common_class_name, class_id |
|
|
|
|
|
def get_class_of_most_confident_detection(detections: List[dict]) -> Tuple[str, int]: |
|
max_confidence = aggregate_field_values( |
|
detections=detections, |
|
field="confidence", |
|
aggregation_mode=AggregationMode.MAX, |
|
) |
|
most_confident_prediction = [ |
|
d for d in detections if d["confidence"] == max_confidence |
|
][0] |
|
return most_confident_prediction["class"], most_confident_prediction["class_id"] |
|
|
|
|
|
def get_class_of_least_confident_detection(detections: List[dict]) -> Tuple[str, int]: |
|
max_confidence = aggregate_field_values( |
|
detections=detections, |
|
field="confidence", |
|
aggregation_mode=AggregationMode.MIN, |
|
) |
|
most_confident_prediction = [ |
|
d for d in detections if d["confidence"] == max_confidence |
|
][0] |
|
return most_confident_prediction["class"], most_confident_prediction["class_id"] |
|
|
|
|
|
AGGREGATION_MODE2CLASS_SELECTOR = { |
|
AggregationMode.MAX: get_class_of_most_confident_detection, |
|
AggregationMode.MIN: get_class_of_least_confident_detection, |
|
AggregationMode.AVERAGE: get_majority_class, |
|
} |
|
|
|
|
|
def get_average_bounding_box(detections: List[dict]) -> Tuple[int, int, int, int]: |
|
x = round(aggregate_field_values(detections=detections, field="x")) |
|
y = round(aggregate_field_values(detections=detections, field="y")) |
|
width = round(aggregate_field_values(detections=detections, field="width")) |
|
height = round(aggregate_field_values(detections=detections, field="height")) |
|
return x, y, width, height |
|
|
|
|
|
def get_smallest_bounding_box(detections: List[dict]) -> Tuple[int, int, int, int]: |
|
detection_sizes = get_detection_sizes(detections=detections) |
|
smallest_size = min(detection_sizes) |
|
matching_detection_id = [ |
|
idx for idx, v in enumerate(detection_sizes) if v == smallest_size |
|
][0] |
|
matching_detection = detections[matching_detection_id] |
|
return ( |
|
matching_detection["x"], |
|
matching_detection["y"], |
|
matching_detection["width"], |
|
matching_detection["height"], |
|
) |
|
|
|
|
|
def get_largest_bounding_box(detections: List[dict]) -> Tuple[int, int, int, int]: |
|
detection_sizes = get_detection_sizes(detections=detections) |
|
largest_size = max(detection_sizes) |
|
matching_detection_id = [ |
|
idx for idx, v in enumerate(detection_sizes) if v == largest_size |
|
][0] |
|
matching_detection = detections[matching_detection_id] |
|
return ( |
|
matching_detection["x"], |
|
matching_detection["y"], |
|
matching_detection[WIDTH_KEY], |
|
matching_detection[HEIGHT_KEY], |
|
) |
|
|
|
|
|
AGGREGATION_MODE2BOXES_AGGREGATOR = { |
|
AggregationMode.MAX: get_largest_bounding_box, |
|
AggregationMode.MIN: get_smallest_bounding_box, |
|
AggregationMode.AVERAGE: get_average_bounding_box, |
|
} |
|
|
|
|
|
def get_detection_sizes(detections: List[dict]) -> List[float]: |
|
return [d[HEIGHT_KEY] * d[WIDTH_KEY] for d in detections] |
|
|
|
|
|
def aggregate_field_values( |
|
detections: List[dict], |
|
field: str, |
|
aggregation_mode: AggregationMode = AggregationMode.AVERAGE, |
|
) -> float: |
|
values = [d[field] for d in detections] |
|
return AGGREGATION_MODE2FIELD_AGGREGATOR[aggregation_mode](values) |
|
|
|
|
|
async def run_active_learning_data_collector( |
|
step: ActiveLearningDataCollector, |
|
runtime_parameters: Dict[str, Any], |
|
outputs_lookup: OutputsLookup, |
|
model_manager: ModelManager, |
|
api_key: Optional[str], |
|
step_execution_mode: StepExecutionMode, |
|
active_learning_middleware: WorkflowsActiveLearningMiddleware, |
|
background_tasks: Optional[BackgroundTasks], |
|
) -> Tuple[NextStepReference, OutputsLookup]: |
|
resolve_parameter_closure = partial( |
|
resolve_parameter, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
image = get_image( |
|
step=step, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
images_meta_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="image", |
|
) |
|
images_meta = resolve_parameter_closure(images_meta_selector) |
|
prediction_type_selector = construct_selector_pointing_step_output( |
|
selector=step.predictions, |
|
new_output="prediction_type", |
|
) |
|
predictions_type = resolve_parameter( |
|
selector_or_value=prediction_type_selector, |
|
runtime_parameters=runtime_parameters, |
|
outputs_lookup=outputs_lookup, |
|
) |
|
prediction_type = set(predictions_type) |
|
if len(prediction_type) > 1: |
|
raise ExecutionGraphError( |
|
f"Active Learning data collection step requires only single prediction " |
|
f"type to be part of ingest. Detected: {prediction_type}." |
|
) |
|
prediction_type = next(iter(prediction_type)) |
|
predictions = resolve_parameter_closure(step.predictions) |
|
predictions_output_name = get_last_selector_chunk(step.predictions) |
|
target_dataset = resolve_parameter_closure(step.target_dataset) |
|
target_dataset_api_key = resolve_parameter_closure(step.target_dataset_api_key) |
|
disable_active_learning = resolve_parameter_closure(step.disable_active_learning) |
|
active_learning_compatible_predictions = [ |
|
{"image": image_meta, predictions_output_name: prediction} |
|
for image_meta, prediction in zip(images_meta, predictions) |
|
] |
|
active_learning_middleware.register( |
|
|
|
dataset_name=target_dataset, |
|
images=image, |
|
predictions=active_learning_compatible_predictions, |
|
api_key=target_dataset_api_key or api_key, |
|
active_learning_disabled_for_request=disable_active_learning, |
|
prediction_type=prediction_type, |
|
background_tasks=background_tasks, |
|
active_learning_configuration=step.active_learning_configuration, |
|
) |
|
return None, outputs_lookup |
|
|