Fucius commited on
Commit
590da30
·
verified ·
1 Parent(s): c322352

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -598
app.py CHANGED
@@ -4,603 +4,12 @@ import os
4
 
5
 
6
 
7
- # os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
8
- # cwd0 = os.getcwd()
9
- # cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
10
- # os.chdir(cwd1)
11
- # os.system("make setup")
12
- # os.system(f"cd /home/user/app")
 
13
 
14
- # sys.path.append('./')
15
- import gradio as gr
16
- import random
17
- import numpy as np
18
- from gradio_demo.character_template import character_man, lorapath_man
19
- from gradio_demo.character_template import character_woman, lorapath_woman
20
- from gradio_demo.character_template import styles, lorapath_styles
21
- import torch
22
- import os
23
- from typing import Tuple, List
24
- import copy
25
- import argparse
26
- from diffusers.utils import load_image
27
- import cv2
28
- from PIL import Image, ImageOps
29
- from transformers import DPTFeatureExtractor, DPTForDepthEstimation
30
- # from controlnet_aux import OpenposeDetector
31
- # from controlnet_aux.open_pose.body import Body
32
-
33
- # try:
34
- from inference.models.yolo_world import YOLOWorld
35
- from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
36
- from src.efficientvit.sam_model_zoo import create_sam_model
37
- import supervision as sv
38
- # except:
39
- # print("YoloWorld can not be load")
40
-
41
- try:
42
- from groundingdino.models import build_model
43
- from groundingdino.util import box_ops
44
- from groundingdino.util.slconfig import SLConfig
45
- from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
46
- from groundingdino.util.inference import annotate, predict
47
- from segment_anything import build_sam, SamPredictor
48
- import groundingdino.datasets.transforms as T
49
- except:
50
- print("groundingdino can not be load")
51
-
52
- from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
53
- from src.prompt_attention.p2p_attention import AttentionReplace
54
- from diffusers import ControlNetModel, StableDiffusionXLPipeline
55
- from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward
56
-
57
- from download import OMG_download
58
-
59
- CHARACTER_MAN_NAMES = list(character_man.keys())
60
- CHARACTER_WOMAN_NAMES = list(character_woman.keys())
61
- STYLE_NAMES = list(styles.keys())
62
- MAX_SEED = np.iinfo(np.int32).max
63
-
64
- ### Description
65
- title = r"""
66
- <h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</h1>
67
- """
68
-
69
- description = r"""
70
- <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<br>
71
- How to use:<br>
72
- 1. Select two characters.
73
- 2. Enter a text prompt as done in normal text-to-image models.
74
- 3. Click the <b>Submit</b> button to start customizing.
75
- 4. Enjoy the generated image😊!
76
- """
77
-
78
- article = r"""
79
- ---
80
- 📝 **Citation**
81
- <br>
82
- If our work is helpful for your research or applications, please cite us via:
83
- ```bibtex
84
- @article{,
85
- title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
86
- author={},
87
- journal={},
88
- year={}
89
- }
90
- ```
91
- """
92
-
93
- tips = r"""
94
- ### Usage tips of OMG
95
- 1. Input text prompts to describe a man and a woman
96
- """
97
-
98
- css = '''
99
- .gradio-container {width: 85% !important}
100
- '''
101
-
102
- def sample_image(pipe,
103
- input_prompt,
104
- input_neg_prompt=None,
105
- generator=None,
106
- concept_models=None,
107
- num_inference_steps=50,
108
- guidance_scale=7.5,
109
- controller=None,
110
- stage=None,
111
- region_masks=None,
112
- lora_list = None,
113
- styleL=None,
114
- **extra_kargs
115
- ):
116
-
117
- spatial_condition = extra_kargs.pop('spatial_condition')
118
- if spatial_condition is not None:
119
- spatial_condition_input = [spatial_condition] * len(input_prompt)
120
- else:
121
- spatial_condition_input = None
122
-
123
- images = pipe(
124
- prompt=input_prompt,
125
- concept_models=concept_models,
126
- negative_prompt=input_neg_prompt,
127
- generator=generator,
128
- guidance_scale=guidance_scale,
129
- num_inference_steps=num_inference_steps,
130
- cross_attention_kwargs={"scale": 0.8},
131
- controller=controller,
132
- stage=stage,
133
- region_masks=region_masks,
134
- lora_list=lora_list,
135
- styleL=styleL,
136
- image=spatial_condition_input,
137
- **extra_kargs).images
138
-
139
- return images
140
-
141
- def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
142
- image = np.asarray(image_source)
143
- return image
144
-
145
- def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
146
- transform = T.Compose(
147
- [
148
- T.RandomResize([800], max_size=1333),
149
- T.ToTensor(),
150
- T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
151
- ]
152
- )
153
- image = np.asarray(image_source)
154
- image_transformed, _ = transform(image_source, None)
155
- return image, image_transformed
156
-
157
- def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
158
- if segmentType=='GroundingDINO':
159
- image_source, image = load_image_dino(image)
160
- boxes, logits, phrases = predict(
161
- model=segmentmodel,
162
- image=image,
163
- caption=TEXT_PROMPT,
164
- box_threshold=0.3,
165
- text_threshold=0.25
166
- )
167
- sam.set_image(image_source)
168
- H, W, _ = image_source.shape
169
- boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
170
-
171
- transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
172
- masks, _, _ = sam.predict_torch(
173
- point_coords=None,
174
- point_labels=None,
175
- boxes=transformed_boxes,
176
- multimask_output=False,
177
- )
178
- masks=masks[0].squeeze(0)
179
- else:
180
- image_source = load_image_yoloworld(image)
181
- segmentmodel.set_classes([TEXT_PROMPT])
182
- results = segmentmodel.infer(image_source, confidence=confidence)
183
- detections = sv.Detections.from_inference(results).with_nms(
184
- class_agnostic=True, threshold=threshold
185
- )
186
- masks = None
187
- if len(detections) != 0:
188
- print(TEXT_PROMPT + " detected!")
189
- sam.set_image(image_source, image_format="RGB")
190
- masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
191
- masks = torch.from_numpy(masks.squeeze())
192
-
193
- return masks
194
-
195
- def prepare_text(prompt, region_prompts):
196
- '''
197
- Args:
198
- prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
199
- Returns:
200
- full_prompt: subject1, attribute1 and subject2, attribute2, global text
201
- context_prompt: subject1 and subject2, global text
202
- entity_collection: [(subject1, attribute1), Location1]
203
- '''
204
- region_collection = []
205
-
206
- regions = region_prompts.split('|')
207
-
208
- for region in regions:
209
- if region == '':
210
- break
211
- prompt_region, neg_prompt_region = region.split('-*-')
212
- prompt_region = prompt_region.replace('[', '').replace(']', '')
213
- neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
214
-
215
- region_collection.append((prompt_region, neg_prompt_region))
216
- return (prompt, region_collection)
217
-
218
-
219
- def build_model_sd(pretrained_model, controlnet_path, device, prompts):
220
- controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
221
- pipe = LoraMultiConceptPipeline.from_pretrained(
222
- pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
223
- controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
224
- revise_regionally_controlnet_forward(pipe.unet, controller)
225
- pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
226
- variant="fp16").to(device)
227
- return pipe, controller, pipe_concept
228
-
229
- def build_model_lora(pipe_concept, lora_paths, style_path, condition, args, pipe):
230
- pipe_list = []
231
- if condition == "Human pose":
232
- controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
233
- pipe.controlnet = controlnet
234
- elif condition == "Canny Edge":
235
- controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
236
- pipe.controlnet = controlnet
237
- elif condition == "Depth":
238
- controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
239
- pipe.controlnet = controlnet
240
-
241
- if style_path is not None and os.path.exists(style_path):
242
- pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
243
- pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
244
-
245
- for lora_path in lora_paths.split('|'):
246
- adapter_name = lora_path.split('/')[-1].split('.')[0]
247
- pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
248
- pipe_concept.enable_xformers_memory_efficient_attention()
249
- pipe_list.append(adapter_name)
250
- return pipe_list
251
-
252
- def build_yolo_segment_model(sam_path, device):
253
- yolo_world = YOLOWorld(model_id="yolo_world/l")
254
- sam = EfficientViTSamPredictor(
255
- create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
256
- )
257
- return yolo_world, sam
258
-
259
- def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
260
- args = SLConfig.fromfile(ckpt_config_filename)
261
- model = build_model(args)
262
- args.device = device
263
-
264
- checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
265
- log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
266
- print("Model loaded from {} \n => {}".format(filename, log))
267
- _ = model.eval()
268
- return model
269
-
270
- def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
271
- ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
272
- ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
273
- groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
274
- sam = build_sam(checkpoint=sam_checkpoint)
275
- sam.cuda()
276
- sam_predictor = SamPredictor(sam)
277
- return groundingdino_model, sam_predictor
278
-
279
- def resize_and_center_crop(image, output_size=(1024, 576)):
280
- width, height = image.size
281
- aspect_ratio = width / height
282
- new_height = output_size[1]
283
- new_width = int(aspect_ratio * new_height)
284
-
285
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
286
-
287
- if new_width < output_size[0] or new_height < output_size[1]:
288
- padding_color = "gray"
289
- resized_image = ImageOps.expand(resized_image,
290
- ((output_size[0] - new_width) // 2,
291
- (output_size[1] - new_height) // 2,
292
- (output_size[0] - new_width + 1) // 2,
293
- (output_size[1] - new_height + 1) // 2),
294
- fill=padding_color)
295
-
296
- left = (resized_image.width - output_size[0]) / 2
297
- top = (resized_image.height - output_size[1]) / 2
298
- right = (resized_image.width + output_size[0]) / 2
299
- bottom = (resized_image.height + output_size[1]) / 2
300
-
301
- cropped_image = resized_image.crop((left, top, right, bottom))
302
-
303
- return cropped_image
304
-
305
- def main(device, segment_type):
306
- pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)
307
-
308
- # if segment_type == 'GroundingDINO':
309
- # detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
310
- # else:
311
- # detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
312
-
313
- resolution_list = ["1440*728",
314
- "1344*768",
315
- "1216*832",
316
- "1152*896",
317
- "1024*1024",
318
- "896*1152",
319
- "832*1216",
320
- "768*1344",
321
- "728*1440"]
322
- ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
323
- 728 / 1440]
324
- condition_list = ["None",
325
- "Human pose",
326
- "Canny Edge",
327
- "Depth"]
328
-
329
- depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
330
- feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
331
- # body_model = Body(args.pose_detector_checkpoint)
332
- # openpose = OpenposeDetector(body_model)
333
-
334
- def remove_tips():
335
- return gr.update(visible=False)
336
-
337
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
338
- if randomize_seed:
339
- seed = random.randint(0, MAX_SEED)
340
- return seed
341
-
342
- def get_humanpose(img):
343
- openpose_image = openpose(img)
344
- return openpose_image
345
-
346
- def get_cannyedge(image):
347
- image = np.array(image)
348
- image = cv2.Canny(image, 100, 200)
349
- image = image[:, :, None]
350
- image = np.concatenate([image, image, image], axis=2)
351
- canny_image = Image.fromarray(image)
352
- return canny_image
353
-
354
- def get_depth(image):
355
- image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
356
- with torch.no_grad(), torch.autocast("cuda"):
357
- depth_map = depth_estimator(image).predicted_depth
358
-
359
- depth_map = torch.nn.functional.interpolate(
360
- depth_map.unsqueeze(1),
361
- size=(1024, 1024),
362
- mode="bicubic",
363
- align_corners=False,
364
- )
365
- depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
366
- depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
367
- depth_map = (depth_map - depth_min) / (depth_max - depth_min)
368
- image = torch.cat([depth_map] * 3, dim=1)
369
- image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
370
- image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
371
- return image
372
-
373
- @spaces.GPU
374
- def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
375
- # try:
376
- path1 = lorapath_man[man]
377
- path2 = lorapath_woman[woman]
378
- pipe_concept.unload_lora_weights()
379
- pipe.unload_lora_weights()
380
- pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args, pipe)
381
-
382
- if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
383
- styleL = True
384
- else:
385
- styleL = False
386
-
387
- input_list = [prompt1]
388
- condition_list = [condition_img1]
389
- output_list = []
390
-
391
- width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
392
-
393
- kwargs = {
394
- 'height': height,
395
- 'width': width,
396
- }
397
-
398
- for prompt, condition_img in zip(input_list, condition_list):
399
- if prompt!='':
400
- input_prompt = []
401
- p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
402
- if styleL:
403
- p = styles[style] + p
404
- input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
405
- if styleL:
406
- input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]),
407
- (styles[style] + local_prompt2, character_woman.get(woman)[1])])
408
- else:
409
- input_prompt.append([(local_prompt1, character_man.get(man)[1]),
410
- (local_prompt2, character_woman.get(woman)[1])])
411
-
412
- if condition == 'Human pose' and condition_img is not None:
413
- index = ratio_list.index(
414
- min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
415
- resolution = resolution_list[index]
416
- width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
417
- kwargs['height'] = height
418
- kwargs['width'] = width
419
- condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
420
- spatial_condition = get_humanpose(condition_img)
421
- elif condition == 'Canny Edge' and condition_img is not None:
422
- index = ratio_list.index(
423
- min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
424
- resolution = resolution_list[index]
425
- width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
426
- kwargs['height'] = height
427
- kwargs['width'] = width
428
- condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
429
- spatial_condition = get_cannyedge(condition_img)
430
- elif condition == 'Depth' and condition_img is not None:
431
- index = ratio_list.index(
432
- min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
433
- resolution = resolution_list[index]
434
- width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
435
- kwargs['height'] = height
436
- kwargs['width'] = width
437
- condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
438
- spatial_condition = get_depth(condition_img)
439
- else:
440
- spatial_condition = None
441
-
442
- kwargs['spatial_condition'] = spatial_condition
443
- controller.reset()
444
- image = sample_image(
445
- pipe,
446
- input_prompt=input_prompt,
447
- concept_models=pipe_concept,
448
- input_neg_prompt=[negative_prompt] * len(input_prompt),
449
- generator=torch.Generator(device).manual_seed(seed),
450
- controller=controller,
451
- stage=1,
452
- lora_list=pipe_list,
453
- styleL=styleL,
454
- **kwargs)
455
-
456
- controller.reset()
457
- if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
458
- mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
459
- threshold=0.5)
460
- else:
461
- mask1 = None
462
-
463
- if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
464
- mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
465
- threshold=0.5)
466
- else:
467
- mask2 = None
468
-
469
- if mask1 is None and mask2 is None:
470
- output_list.append(image[1])
471
- else:
472
- image = sample_image(
473
- pipe,
474
- input_prompt=input_prompt,
475
- concept_models=pipe_concept,
476
- input_neg_prompt=[negative_prompt] * len(input_prompt),
477
- generator=torch.Generator(device).manual_seed(seed),
478
- controller=controller,
479
- stage=2,
480
- region_masks=[mask1, mask2],
481
- lora_list=pipe_list,
482
- styleL=styleL,
483
- **kwargs)
484
- output_list.append(image[1])
485
- else:
486
- output_list.append(None)
487
- output_list.append(spatial_condition)
488
- return output_list
489
- # except:
490
- # print("error")
491
- # return
492
-
493
- def get_local_value_man(input):
494
- return character_man[input][0]
495
-
496
- def get_local_value_woman(input):
497
- return character_woman[input][0]
498
-
499
- @spaces.GPU
500
- def generate(prompt):
501
- res = (os.system(prompt))
502
- return res
503
-
504
- gr.Interface(
505
- fn=generate,
506
- inputs=gr.Text(),
507
- outputs=gr.Text(),
508
- ).launch()
509
-
510
- # with gr.Blocks(css=css) as demo:
511
- # # description
512
- # gr.Markdown(title)
513
- # gr.Markdown(description)
514
-
515
- # with gr.Row():
516
- # gallery = gr.Image(label="Generated Images", height=512, width=512)
517
- # gen_condition = gr.Image(label="Spatial Condition", height=512, width=512)
518
- # usage_tips = gr.Markdown(label="Usage tips of OMG", value=tips, visible=False)
519
-
520
- # with gr.Row():
521
- # condition_img1 = gr.Image(label="Input an RGB image for condition", height=128, width=128)
522
-
523
- # # character choose
524
- # with gr.Row():
525
- # man = gr.Dropdown(label="Character 1 selection", choices=CHARACTER_MAN_NAMES, value="Chris Evans (identifier: Chris Evans)")
526
- # woman = gr.Dropdown(label="Character 2 selection", choices=CHARACTER_WOMAN_NAMES, value="Taylor Swift (identifier: TaylorSwift)")
527
- # resolution = gr.Dropdown(label="Image Resolution (width*height)", choices=resolution_list, value="1024*1024")
528
- # condition = gr.Dropdown(label="Input condition type", choices=condition_list, value="None")
529
- # style = gr.Dropdown(label="style", choices=STYLE_NAMES, value="None")
530
-
531
- # with gr.Row():
532
- # local_prompt1 = gr.Textbox(label="Character1_prompt",
533
- # info="Describe the Character 1, this prompt should include the identifier of character 1",
534
- # value="Close-up photo of the Chris Evans, 35mm photograph, film, professional, 4k, highly detailed.")
535
- # local_prompt2 = gr.Textbox(label="Character2_prompt",
536
- # info="Describe the Character 2, this prompt should include the identifier of character2",
537
- # value="Close-up photo of the TaylorSwift, 35mm photograph, film, professional, 4k, highly detailed.")
538
-
539
- # man.change(get_local_value_man, man, local_prompt1)
540
- # woman.change(get_local_value_woman, woman, local_prompt2)
541
-
542
- # # prompt
543
- # with gr.Column():
544
- # prompt = gr.Textbox(label="Prompt 1",
545
- # info="Give a simple prompt to describe the first image content",
546
- # placeholder="Required",
547
- # value="close-up shot, photography, a man and a woman on the street, facing the camera smiling")
548
-
549
-
550
- # with gr.Accordion(open=False, label="Advanced Options"):
551
- # seed = gr.Slider(
552
- # label="Seed",
553
- # minimum=0,
554
- # maximum=MAX_SEED,
555
- # step=1,
556
- # value=42,
557
- # )
558
- # negative_prompt = gr.Textbox(label="Negative Prompt",
559
- # placeholder="noisy, blurry, soft, deformed, ugly",
560
- # value="noisy, blurry, soft, deformed, ugly")
561
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
562
-
563
- # submit = gr.Button("Submit", variant="primary")
564
-
565
- # submit.click(
566
- # fn=remove_tips,
567
- # outputs=usage_tips,
568
- # ).then(
569
- # fn=randomize_seed_fn,
570
- # inputs=[seed, randomize_seed],
571
- # outputs=seed,
572
- # queue=False,
573
- # api_name=False,
574
- # ).then(
575
- # fn=generate_image,
576
- # inputs=[prompt, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style],
577
- # outputs=[gallery, gen_condition]
578
- # )
579
- # demo.launch(share=True)
580
-
581
- def parse_args():
582
- parser = argparse.ArgumentParser('', add_help=False)
583
- parser.add_argument('--pretrained_sdxl_model', default='Fucius/stable-diffusion-xl-base-1.0', type=str)
584
- parser.add_argument('--openpose_checkpoint', default='thibaud/controlnet-openpose-sdxl-1.0', type=str)
585
- parser.add_argument('--canny_checkpoint', default='diffusers/controlnet-canny-sdxl-1.0', type=str)
586
- parser.add_argument('--depth_checkpoint', default='diffusers/controlnet-depth-sdxl-1.0', type=str)
587
- parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str)
588
- parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
589
- parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
590
- parser.add_argument('--dpt_checkpoint', default='Intel/dpt-hybrid-midas', type=str)
591
- parser.add_argument('--pose_detector_checkpoint', default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
592
- parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
593
- parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
594
- parser.add_argument('--seed', default=22, type=int)
595
- parser.add_argument('--suffix', default='', type=str)
596
- parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
597
- return parser.parse_args()
598
-
599
- if __name__ == '__main__':
600
- args = parse_args()
601
 
602
- prompts = [args.prompt]*2
603
- prompts_tmp = copy.deepcopy(prompts)
604
- device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
605
- download = OMG_download()
606
- main(device, args.segment_type)
 
4
 
5
 
6
 
7
+ os.system(f"git clone https://github.com/Curt-Park/yolo-world-with-efficientvit-sam.git")
8
+ cwd0 = os.getcwd()
9
+ cwd1 = os.path.join(cwd0, "yolo-world-with-efficientvit-sam")
10
+ os.chdir(cwd1)
11
+ os.system("make setup")
12
+ os.system(f"cd /home/user/app")
13
+ os.system("python app2.py")
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15