File size: 6,819 Bytes
f4ce306
 
 
 
 
 
 
 
 
 
 
 
a06c7aa
 
f4ce306
 
 
 
 
 
 
 
 
 
 
a06c7aa
 
 
 
 
2c54fda
 
a06c7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ce306
a06c7aa
f4ce306
 
 
 
 
 
 
 
 
 
 
a06c7aa
f4ce306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06c7aa
f4ce306
 
 
a06c7aa
f4ce306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06c7aa
 
 
 
f4ce306
 
 
a06c7aa
f4ce306
 
 
 
 
 
 
 
 
 
 
 
 
 
a06c7aa
f4ce306
 
 
 
 
 
 
 
 
a06c7aa
f4ce306
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Force TensorFlow to use CPU

import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
import smtplib
from email.message import EmailMessage

# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")

# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
    html_content = file.read()

# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]

# Create a folder for reports
REPORTS_DIR = "reports"
os.makedirs(REPORTS_DIR, exist_ok=True)

# Email Configuration
SENDER_EMAIL = "[email protected]"  # Change this
SENDER_PASSWORD = "1w3r5y7i9pW$"  # Use an App Password if using Gmail

# Function to send email with PDF attachment
def send_email_with_attachment(to_email, file_path, patient_name):
    msg = EmailMessage()
    msg["Subject"] = f"Bone Fracture Report for {patient_name}"
    msg["From"] = SENDER_EMAIL
    msg["To"] = to_email
    msg.set_content(f"Dear {patient_name},\n\nAttached is your bone fracture detection report.\n\nThank you!")

    # Attach PDF
    with open(file_path, "rb") as f:
        file_data = f.read()
        file_name = os.path.basename(file_path)
        msg.add_attachment(file_data, maintype="application", subtype="pdf", filename=file_name)

    # Send Email
    try:
        with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:
            server.login(SENDER_EMAIL, SENDER_PASSWORD)
            server.send_message(msg)
        print(f"✅ Email sent to {to_email}")
    except Exception as e:
        print(f"❌ Failed to send email: {e}")

# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, allergies, cause, xray, email):
    image_size = (224, 224)

    def predict_fracture(xray_path):
        img = Image.open(xray_path).resize(image_size)
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)[0][0]
        return prediction

    # Predict fracture
    prediction = predict_fracture(xray)
    diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"

    # Injury severity classification
    severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"

    # Treatment details table
    treatment_data = [
        ["Severity Level", "Recommended Treatment", "Recovery Duration"],
        ["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
        ["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
        ["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
    ]

    # Estimated cost & duration table
    cost_duration_data = [
        ["Hospital Type", "Estimated Cost", "Recovery Time"],
        ["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
        ["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
    ]

    # Save X-ray image for report
    img = Image.open(xray).resize((300, 300))
    img_path = os.path.join(REPORTS_DIR, f"{name}_xray.png")
    img.save(img_path)

    # Generate PDF report
    report_path = os.path.join(REPORTS_DIR, f"{name}_fracture_report.pdf")
    c = canvas.Canvas(report_path, pagesize=letter)
    
    # Report title
    c.setFont("Helvetica-Bold", 16)
    c.drawString(200, 770, "Bone Fracture Detection Report")

    # Patient details table
    patient_data = [
        ["Patient Name", name],
        ["Age", age],
        ["Gender", gender],
        ["Weight", f"{weight} kg"],
        ["Height", f"{height} cm"],
        ["Allergies", allergies if allergies else "None"],
        ["Cause of Injury", cause if cause else "Not Provided"],
        ["Diagnosis", diagnosed_class],
        ["Injury Severity", severity]
    ]

    # Format and align tables
    def format_table(data):
        table = Table(data, colWidths=[270, 270])  # Set 90% width
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
            ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
            ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
            ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
            ('BOTTOMPADDING', (0, 0), (-1, 0), 12),
            ('GRID', (0, 0), (-1, -1), 1, colors.black),
            ('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
        ]))
        return table

    # Draw patient details table
    patient_table = format_table(patient_data)
    patient_table.wrapOn(c, 480, 500)
    patient_table.drawOn(c, 50, 620)

    # Load and insert X-ray image
    c.drawInlineImage(img_path, 50, 320, width=250, height=250)
    c.setFont("Helvetica-Bold", 12)
    c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")

    # Draw treatment and cost tables
    treatment_table = format_table(treatment_data)
    treatment_table.wrapOn(c, 480, 200)
    treatment_table.drawOn(c, 50, 200)

    cost_table = format_table(cost_duration_data)
    cost_table.wrapOn(c, 480, 150)
    cost_table.drawOn(c, 50, 80)

    c.save()

    # Send Email with the Report
    send_email_with_attachment(email, report_path, name)
    
    return report_path  # Return path for download

# Define Gradio Interface
with gr.Blocks() as app:
    gr.HTML(html_content)  
    gr.Markdown("## Bone Fracture Detection System")
    
    with gr.Row():
        name = gr.Textbox(label="Patient Name")
        age = gr.Number(label="Age")
        gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
    
    with gr.Row():
        weight = gr.Number(label="Weight (kg)")
        height = gr.Number(label="Height (cm)")
    
    with gr.Row():
        allergies = gr.Textbox(label="Allergies (if any)")
        cause = gr.Textbox(label="Cause of Injury")
        email = gr.Textbox(label="Patient Email")  # New Email Input Field

    with gr.Row():
        xray = gr.Image(type="filepath", label="Upload X-ray Image")

    submit_button = gr.Button("Generate Report")
    output_file = gr.File(label="Download Report")

    submit_button.click(
        generate_report,
        inputs=[name, age, gender, weight, height, allergies, cause, xray, email],
        outputs=[output_file],
    )

if __name__ == "__main__":
    app.launch()