ftx7go's picture
Upload app.py
e6314ee verified
raw
history blame
12.6 kB
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import HTMLResponse
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np
import io
import uvicorn
import base64
app = FastAPI()
# Chargement des modèles
def load_models():
return {
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"RöntgenMeister": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
models = load_models()
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Knochenbruch",
"normal": "Normal",
"abnormal": "Auffällig",
"F1": "Knochenbruch",
"NF": "Kein Knochenbruch"
}
return translations.get(label.lower(), label)
def create_heatmap_overlay(image, box, score):
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
x1, y1 = box['xmin'], box['ymin']
x2, y2 = box['xmax'], box['ymax']
if score > 0.8:
fill_color = (255, 0, 0, 100)
border_color = (255, 0, 0, 255)
elif score > 0.6:
fill_color = (255, 165, 0, 100)
border_color = (255, 165, 0, 255)
else:
fill_color = (255, 255, 0, 100)
border_color = (255, 255, 0, 255)
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
return overlay
def draw_boxes(image, predictions):
result_image = image.copy().convert('RGBA')
for pred in predictions:
box = pred['box']
score = pred['score']
overlay = create_heatmap_overlay(image, box, score)
result_image = Image.alpha_composite(result_image, overlay)
draw = ImageDraw.Draw(result_image)
temp = 36.5 + (score * 2.5)
label = f"{translate_label(pred['label'])} ({score:.1%}{temp:.1f}°C)"
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
draw.text(
(box['xmin'], box['ymin']-20),
label,
fill=(255, 255, 255, 255)
)
return result_image
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
COMMON_STYLES = """
body {
font-family: system-ui, -apple-system, sans-serif;
background: #f0f2f5;
margin: 0;
padding: 20px;
color: #1a1a1a;
}
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: transparent;
}
::-webkit-scrollbar-thumb {
background-color: rgba(156, 163, 175, 0.5);
border-radius: 4px;
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.button {
background: #2d2d2d;
color: white;
border: none;
padding: 12px 30px;
border-radius: 8px;
cursor: pointer;
font-size: 1.1em;
transition: all 0.3s ease;
position: relative;
}
.button:hover {
background: #404040;
}
@keyframes progress {
0% { width: 0; }
100% { width: 100%; }
}
.button-progress {
position: absolute;
bottom: 0;
left: 0;
height: 4px;
background: rgba(255, 255, 255, 0.5);
width: 0;
}
.button:active .button-progress {
animation: progress 2s linear forwards;
}
img {
max-width: 100%;
height: auto;
border-radius: 8px;
}
@keyframes blink {
0% { opacity: 1; }
50% { opacity: 0; }
100% { opacity: 1; }
}
#loading {
display: none;
color: white;
margin-top: 10px;
animation: blink 1s infinite;
text-align: center;
}
"""
@app.get("/", response_class=HTMLResponse)
async def main():
content = f"""
<!DOCTYPE html>
<html>
<head>
<title>Fraktur Detektion</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
{COMMON_STYLES}
.upload-section {{
background: #2d2d2d;
padding: 40px;
border-radius: 12px;
margin: 20px 0;
text-align: center;
border: 2px dashed #404040;
transition: all 0.3s ease;
color: white;
}}
.upload-section:hover {{
border-color: #555;
}}
input[type="file"] {{
font-size: 1.1em;
margin: 20px 0;
color: white;
}}
input[type="file"]::file-selector-button {{
font-size: 1em;
padding: 10px 20px;
border-radius: 8px;
border: 1px solid #404040;
background: #2d2d2d;
color: white;
transition: all 0.3s ease;
cursor: pointer;
}}
input[type="file"]::file-selector-button:hover {{
background: #404040;
}}
.confidence-slider {{
width: 100%;
max-width: 300px;
margin: 20px auto;
}}
input[type="range"] {{
width: 100%;
height: 8px;
border-radius: 4px;
background: #404040;
outline: none;
transition: all 0.3s ease;
-webkit-appearance: none;
}}
input[type="range"]::-webkit-slider-thumb {{
-webkit-appearance: none;
width: 20px;
height: 20px;
border-radius: 50%;
background: white;
cursor: pointer;
border: none;
}}
</style>
</head>
<body>
<div class="container">
<div class="upload-section">
<form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';">
<div>
<input type="file" name="file" accept="image/*" required>
</div>
<div class="confidence-slider">
<label for="threshold">Konfidenzschwelle: <span id="thresholdValue">0.60</span></label>
<input type="range" id="threshold" name="threshold"
min="0" max="1" step="0.05" value="0.60"
oninput="document.getElementById('thresholdValue').textContent = parseFloat(this.value).toFixed(2)">
</div>
<button type="submit" class="button">
Analysieren
<div class="button-progress"></div>
</button>
<div id="loading">Loading...</div>
</form>
</div>
</div>
</body>
</html>
"""
return content
@app.post("/analyze", response_class=HTMLResponse)
async def analyze_file(file: UploadFile = File(...)):
try:
contents = await file.read()
image = Image.open(io.BytesIO(contents))
predictions_watcher = models["KnochenWächter"](image)
predictions_master = models["RöntgenMeister"](image)
predictions_locator = models["KnochenAuge"](image)
filtered_preds = [p for p in predictions_locator if p['score'] >= 0.6]
if filtered_preds:
result_image = draw_boxes(image, filtered_preds)
else:
result_image = image
result_image_b64 = image_to_base64(result_image)
results_html = f"""
<!DOCTYPE html>
<html>
<head>
<title>Ergebnisse</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
{COMMON_STYLES}
.results-grid {{
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}}
.result-box {{
background: white;
padding: 20px;
border-radius: 12px;
margin: 10px 0;
border: 1px solid #e9ecef;
}}
.score-high {{
color: #0066cc;
font-weight: bold;
}}
.score-medium {{
color: #ffa500;
font-weight: bold;
}}
.back-button {{
display: inline-block;
text-decoration: none;
margin-top: 20px;
}}
h3 {{
color: #0066cc;
margin-top: 0;
}}
@media (max-width: 768px) {{
.results-grid {{
grid-template-columns: 1fr;
}}
}}
</style>
</head>
<body>
<div class="container">
<div class="results-grid">
<div>
<div class="result-box"><h3>KnochenWächter</h3>
"""
for pred in predictions_watcher:
confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium"
results_html += f"""
<div>
<span class="{confidence_class}">{pred['score']:.1%}</span> -
{translate_label(pred['label'])}
</div>
"""
results_html += "</div>"
results_html += "<div class='result-box'><h3>RöntgenMeister</h3>"
for pred in predictions_master:
confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium"
results_html += f"""
<div>
<span class="{confidence_class}">{pred['score']:.1%}</span> -
{translate_label(pred['label'])}
</div>
"""
results_html += "</div></div>"
results_html += f"""
<div class='result-box'>
<h3>Fraktur Lokalisation</h3>
<img src="{result_image_b64}" alt="Analyzed image">
</div>
</div>
<a href="/" class="button back-button">
← Zurück
<div class="button-progress"></div>
</a>
</div>
</body>
</html>
"""
return results_html
except Exception as e:
return f"""
<!DOCTYPE html>
<html>
<head>
<title>Fehler</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
{COMMON_STYLES}
.error-box {{
background: #fee2e2;
border: 1px solid #ef4444;
padding: 20px;
border-radius: 8px;
margin: 20px 0;
}}
</style>
</head>
<body>
<div class="container">
<div class="error-box">
<h3>Fehler</h3>
<p>{str(e)}</p>
</div>
<a href="/" class="button back-button">
← Zurück
<div class="button-progress"></div>
</a>
</div>
</body>
</html>
"""
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)