|
from flask import Flask, render_template, request, send_file |
|
import gradio as gr |
|
import threading |
|
import tensorflow as tf |
|
import numpy as np |
|
from tensorflow.keras.preprocessing import image |
|
from PIL import Image |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.pdfgen import canvas |
|
import os |
|
|
|
|
|
model = tf.keras.models.load_model("my_keras_model.h5") |
|
|
|
app = Flask(__name__, template_folder="templates", static_folder="static") |
|
|
|
|
|
def generate_report(name, age, gender, xray1, xray2): |
|
image_size = (224, 224) |
|
|
|
def predict_fracture(xray): |
|
img = Image.open(xray).resize(image_size) |
|
img_array = image.img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array)[0][0] |
|
return prediction |
|
|
|
|
|
prediction1 = predict_fracture(xray1) |
|
prediction2 = predict_fracture(xray2) |
|
avg_prediction = (prediction1 + prediction2) / 2 |
|
diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" |
|
|
|
|
|
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" |
|
treatment = { |
|
"Mild": "Rest, pain relievers, follow-up X-ray.", |
|
"Moderate": "Plaster cast, possible minor surgery.", |
|
"Severe": "Major surgery, metal implants, physiotherapy." |
|
}[severity] |
|
gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] |
|
private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] |
|
|
|
|
|
report_path = f"{name}_fracture_report.pdf" |
|
c = canvas.Canvas(report_path, pagesize=letter) |
|
c.setFont("Helvetica", 12) |
|
c.drawString(100, 750, f"Patient Name: {name}") |
|
c.drawString(100, 730, f"Age: {age}") |
|
c.drawString(100, 710, f"Gender: {gender}") |
|
c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") |
|
c.drawString(100, 670, f"Injury Severity: {severity}") |
|
c.drawString(100, 650, f"Recommended Treatment: {treatment}") |
|
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") |
|
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") |
|
c.save() |
|
|
|
return report_path |
|
|
|
|
|
@app.route("/") |
|
def home(): |
|
return render_template("re.html") |
|
|
|
|
|
@app.route("/submit_report", methods=["POST"]) |
|
def submit_report(): |
|
name = request.form["first_name"] + " " + request.form["surname"] |
|
age = request.form["age"] |
|
gender = request.form["gender"] |
|
xray1 = request.files["xray_side"] |
|
xray2 = request.files["xray_top"] |
|
|
|
|
|
pdf_path = generate_report(name, age, gender, xray1, xray2) |
|
|
|
return send_file(pdf_path, as_attachment=True) |
|
|
|
|
|
def run_gradio(): |
|
interface = gr.Interface( |
|
fn=generate_report, |
|
inputs=[ |
|
gr.Textbox(label="Patient Name"), |
|
gr.Number(label="Age"), |
|
gr.Radio(["Male", "Female", "Other"], label="Gender"), |
|
gr.Image(type="file", label="Upload X-ray Image 1"), |
|
gr.Image(type="file", label="Upload X-ray Image 2"), |
|
], |
|
outputs=gr.File(label="Download Report"), |
|
title="Bone Fracture Detection & Medical Report", |
|
description="Enter patient details, upload two X-ray images, and generate a detailed medical report." |
|
) |
|
interface.launch(share=True) |
|
|
|
if __name__ == "__main__": |
|
threading.Thread(target=run_gradio).start() |
|
app.run(host="0.0.0.0", port=7861, debug=True) |