|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" |
|
|
|
import gradio as gr |
|
import tensorflow as tf |
|
import numpy as np |
|
from tensorflow.keras.preprocessing import image |
|
from PIL import Image |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.pdfgen import canvas |
|
|
|
|
|
model = tf.keras.models.load_model("my_keras_model.h5") |
|
|
|
|
|
with open("templates/re.html", "r", encoding="utf-8") as file: |
|
html_content = file.read() |
|
|
|
|
|
def generate_report(name, age, gender, xray1, xray2): |
|
image_size = (224, 224) |
|
|
|
def predict_fracture(xray_path): |
|
img = Image.open(xray_path).resize(image_size) |
|
img_array = image.img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
prediction = model.predict(img_array)[0][0] |
|
return prediction |
|
|
|
|
|
prediction1 = predict_fracture(xray1) |
|
prediction2 = predict_fracture(xray2) |
|
avg_prediction = (prediction1 + prediction2) / 2 |
|
diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" |
|
|
|
|
|
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" |
|
treatment = { |
|
"Mild": "Rest, pain relievers, follow-up X-ray.", |
|
"Moderate": "Plaster cast, possible minor surgery.", |
|
"Severe": "Major surgery, metal implants, physiotherapy." |
|
}[severity] |
|
gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] |
|
private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] |
|
|
|
|
|
report_path = f"{name}_fracture_report.pdf" |
|
c = canvas.Canvas(report_path, pagesize=letter) |
|
c.setFont("Helvetica", 12) |
|
c.drawString(100, 750, f"Patient Name: {name}") |
|
c.drawString(100, 730, f"Age: {age}") |
|
c.drawString(100, 710, f"Gender: {gender}") |
|
c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") |
|
c.drawString(100, 670, f"Injury Severity: {severity}") |
|
c.drawString(100, 650, f"Recommended Treatment: {treatment}") |
|
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") |
|
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") |
|
c.save() |
|
|
|
return report_path |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.HTML(html_content) |
|
gr.Markdown("## Bone Fracture Detection System") |
|
|
|
with gr.Row(): |
|
name = gr.Textbox(label="Patient Name") |
|
age = gr.Number(label="Age") |
|
gender = gr.Radio(["Male", "Female", "Other"], label="Gender") |
|
|
|
with gr.Row(): |
|
xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1") |
|
xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2") |
|
|
|
submit_button = gr.Button("Generate Report") |
|
output_file = gr.File(label="Download Report") |
|
|
|
submit_button.click( |
|
generate_report, |
|
inputs=[name, age, gender, xray1, xray2], |
|
outputs=[output_file], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.launch() |