Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,9 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing import image
|
5 |
from PIL import Image
|
|
|
|
|
6 |
import os
|
7 |
-
from fpdf import FPDF
|
8 |
-
import datetime
|
9 |
|
10 |
# Load the trained model
|
11 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
@@ -13,56 +13,61 @@ model = tf.keras.models.load_model("my_keras_model.h5")
|
|
13 |
# Define image size based on the model's input requirement
|
14 |
image_size = (224, 224)
|
15 |
|
16 |
-
# Function to
|
17 |
-
def
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
pdf.set_font("Arial", style='B', size=16)
|
43 |
-
pdf.cell(200, 10, "Bone Fracture Detection Report", ln=True, align='C')
|
44 |
-
pdf.ln(10)
|
45 |
-
|
46 |
-
# Add patient details
|
47 |
-
pdf.set_font("Arial", size=12)
|
48 |
-
pdf.cell(200, 10, f"Patient Name: {name}", ln=True)
|
49 |
-
pdf.cell(200, 10, f"Age: {age}", ln=True)
|
50 |
-
pdf.cell(200, 10, f"Weight: {weight} kg", ln=True)
|
51 |
-
pdf.cell(200, 10, f"Height: {height} cm", ln=True)
|
52 |
-
pdf.cell(200, 10, f"Diagnosis Date: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True)
|
53 |
-
pdf.ln(10)
|
54 |
-
|
55 |
-
# Add prediction result
|
56 |
-
pdf.set_font("Arial", style='B', size=14)
|
57 |
-
pdf.cell(200, 10, f"Diagnosis: {predicted_class}", ln=True)
|
58 |
-
pdf.set_font("Arial", size=12)
|
59 |
-
pdf.cell(200, 10, f"Confidence: {confidence:.2f}", ln=True)
|
60 |
-
|
61 |
-
# Save PDF
|
62 |
-
pdf_filename = "patient_report.pdf"
|
63 |
-
pdf.output(pdf_filename)
|
64 |
-
|
65 |
-
return pdf_filename
|
66 |
|
67 |
# Define Gradio Interface
|
68 |
interface = gr.Interface(
|
@@ -70,13 +75,13 @@ interface = gr.Interface(
|
|
70 |
inputs=[
|
71 |
gr.Textbox(label="Patient Name"),
|
72 |
gr.Number(label="Age"),
|
73 |
-
gr.
|
74 |
-
gr.
|
75 |
-
gr.Image(type="
|
76 |
],
|
77 |
outputs=gr.File(label="Download Report"),
|
78 |
-
title="Bone Fracture Detection &
|
79 |
-
description="
|
80 |
)
|
81 |
|
82 |
# Launch the Gradio app
|
|
|
3 |
import numpy as np
|
4 |
from tensorflow.keras.preprocessing import image
|
5 |
from PIL import Image
|
6 |
+
from reportlab.lib.pagesizes import letter
|
7 |
+
from reportlab.pdfgen import canvas
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
# Load the trained model
|
11 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
|
|
13 |
# Define image size based on the model's input requirement
|
14 |
image_size = (224, 224)
|
15 |
|
16 |
+
# Function to analyze injury severity
|
17 |
+
def analyze_injury(prediction):
|
18 |
+
if prediction < 0.3:
|
19 |
+
severity = "Mild"
|
20 |
+
treatment = "Rest, pain relievers, and follow-up X-ray."
|
21 |
+
gov_cost = "₹2,000 - ₹5,000"
|
22 |
+
private_cost = "₹10,000 - ₹20,000"
|
23 |
+
elif 0.3 <= prediction < 0.7:
|
24 |
+
severity = "Moderate"
|
25 |
+
treatment = "Plaster cast or splint; possible minor surgery."
|
26 |
+
gov_cost = "₹8,000 - ₹15,000"
|
27 |
+
private_cost = "₹30,000 - ₹60,000"
|
28 |
+
else:
|
29 |
+
severity = "Severe"
|
30 |
+
treatment = "Major surgery with metal implants, extensive physiotherapy."
|
31 |
+
gov_cost = "₹20,000 - ₹50,000"
|
32 |
+
private_cost = "₹1,00,000+"
|
33 |
+
|
34 |
+
return severity, treatment, gov_cost, private_cost
|
35 |
|
36 |
+
# Function to generate report
|
37 |
+
def generate_report(patient_name, age, gender, xray1, xray2):
|
38 |
+
# Process X-ray 1
|
39 |
+
img1 = Image.open(xray1).resize(image_size)
|
40 |
+
img_array1 = image.img_to_array(img1)
|
41 |
+
img_array1 = np.expand_dims(img_array1, axis=0) / 255.0
|
42 |
+
prediction1 = model.predict(img_array1)[0][0]
|
43 |
|
44 |
+
# Process X-ray 2
|
45 |
+
img2 = Image.open(xray2).resize(image_size)
|
46 |
+
img_array2 = image.img_to_array(img2)
|
47 |
+
img_array2 = np.expand_dims(img_array2, axis=0) / 255.0
|
48 |
+
prediction2 = model.predict(img_array2)[0][0]
|
49 |
|
50 |
+
# Get final analysis
|
51 |
+
avg_prediction = (prediction1 + prediction2) / 2
|
52 |
+
predicted_class = "Fractured" if avg_prediction > 0.5 else "Normal"
|
53 |
+
severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction)
|
54 |
|
55 |
+
# Generate PDF
|
56 |
+
report_path = f"{patient_name}_fracture_report.pdf"
|
57 |
+
c = canvas.Canvas(report_path, pagesize=letter)
|
58 |
+
c.setFont("Helvetica", 12)
|
59 |
+
c.drawString(100, 750, f"Patient Name: {patient_name}")
|
60 |
+
c.drawString(100, 730, f"Age: {age}")
|
61 |
+
c.drawString(100, 710, f"Gender: {gender}")
|
62 |
+
c.drawString(100, 690, f"Diagnosis: {predicted_class}")
|
63 |
+
c.drawString(100, 670, f"Injury Severity: {severity}")
|
64 |
+
c.drawString(100, 650, f"Recommended Treatment: {treatment}")
|
65 |
+
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
|
66 |
+
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
|
67 |
+
|
68 |
+
c.save()
|
69 |
|
70 |
+
return report_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Define Gradio Interface
|
73 |
interface = gr.Interface(
|
|
|
75 |
inputs=[
|
76 |
gr.Textbox(label="Patient Name"),
|
77 |
gr.Number(label="Age"),
|
78 |
+
gr.Radio(["Male", "Female", "Other"], label="Gender"),
|
79 |
+
gr.Image(type="file", label="Upload X-ray Image 1"),
|
80 |
+
gr.Image(type="file", label="Upload X-ray Image 2"),
|
81 |
],
|
82 |
outputs=gr.File(label="Download Report"),
|
83 |
+
title="Bone Fracture Detection & Medical Report",
|
84 |
+
description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
|
85 |
)
|
86 |
|
87 |
# Launch the Gradio app
|