Upload 2 files
Browse files- app.py +162 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import tensorflow as tf
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
from PIL import Image
|
9 |
+
from reportlab.lib.pagesizes import letter
|
10 |
+
from reportlab.pdfgen import canvas
|
11 |
+
from reportlab.lib import colors
|
12 |
+
from reportlab.platypus import Table, TableStyle
|
13 |
+
|
14 |
+
# Load the trained model
|
15 |
+
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
+
|
17 |
+
# Read HTML content from `re.html`
|
18 |
+
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
+
html_content = file.read()
|
20 |
+
|
21 |
+
# List of sample images
|
22 |
+
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
+
|
24 |
+
# Function to process X-ray and generate a PDF report
|
25 |
+
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
+
image_size = (224, 224)
|
27 |
+
|
28 |
+
def predict_fracture(xray_path):
|
29 |
+
img = Image.open(xray_path).resize(image_size)
|
30 |
+
img_array = image.img_to_array(img) / 255.0
|
31 |
+
img_array = np.expand_dims(img_array, axis=0)
|
32 |
+
prediction = model.predict(img_array)[0][0]
|
33 |
+
return prediction
|
34 |
+
|
35 |
+
# Predict fracture
|
36 |
+
prediction = predict_fracture(xray)
|
37 |
+
diagnosed_class = "normal" if prediction > 0.5 else "Fractured"
|
38 |
+
|
39 |
+
# Injury severity classification
|
40 |
+
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
41 |
+
|
42 |
+
# Treatment details table
|
43 |
+
treatment_data = [
|
44 |
+
["Severity Level", "Recommended Treatment", "Recovery Duration"],
|
45 |
+
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
|
46 |
+
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
|
47 |
+
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
|
48 |
+
]
|
49 |
+
|
50 |
+
# Estimated cost & duration table
|
51 |
+
cost_duration_data = [
|
52 |
+
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
53 |
+
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
54 |
+
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
55 |
+
]
|
56 |
+
|
57 |
+
# Save X-ray image for report
|
58 |
+
img = Image.open(xray).resize((300, 300))
|
59 |
+
img_path = f"{name}_xray.png"
|
60 |
+
img.save(img_path)
|
61 |
+
|
62 |
+
# Generate PDF report
|
63 |
+
report_path = f"{name}_fracture_report.pdf"
|
64 |
+
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
+
|
66 |
+
# Report title
|
67 |
+
c.setFont("Helvetica-Bold", 16)
|
68 |
+
c.drawString(200, 770, "Bone Fracture Detection Report")
|
69 |
+
|
70 |
+
# Patient details table
|
71 |
+
patient_data = [
|
72 |
+
["Patient Name", name],
|
73 |
+
["Age", age],
|
74 |
+
["Gender", gender],
|
75 |
+
["Weight", f"{weight} kg"],
|
76 |
+
["Height", f"{height} cm"],
|
77 |
+
["Allergies", allergies if allergies else "None"],
|
78 |
+
["Cause of Injury", cause if cause else "Not Provided"],
|
79 |
+
["Diagnosis", diagnosed_class],
|
80 |
+
["Injury Severity", severity]
|
81 |
+
]
|
82 |
+
|
83 |
+
# Format and align tables
|
84 |
+
def format_table(data):
|
85 |
+
table = Table(data, colWidths=[270, 270]) # Set 90% width
|
86 |
+
table.setStyle(TableStyle([
|
87 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
88 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
89 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
90 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
91 |
+
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
|
92 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black),
|
93 |
+
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
|
94 |
+
]))
|
95 |
+
return table
|
96 |
+
|
97 |
+
# Draw patient details table
|
98 |
+
patient_table = format_table(patient_data)
|
99 |
+
patient_table.wrapOn(c, 480, 500)
|
100 |
+
patient_table.drawOn(c, 50, 620)
|
101 |
+
|
102 |
+
# Load and insert X-ray image
|
103 |
+
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
104 |
+
c.setFont("Helvetica-Bold", 12)
|
105 |
+
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
106 |
+
|
107 |
+
# Draw treatment and cost tables
|
108 |
+
treatment_table = format_table(treatment_data)
|
109 |
+
treatment_table.wrapOn(c, 480, 200)
|
110 |
+
treatment_table.drawOn(c, 50, 200)
|
111 |
+
|
112 |
+
cost_table = format_table(cost_duration_data)
|
113 |
+
cost_table.wrapOn(c, 480, 150)
|
114 |
+
cost_table.drawOn(c, 50, 80)
|
115 |
+
|
116 |
+
c.save()
|
117 |
+
|
118 |
+
return report_path # Return path for auto-download
|
119 |
+
|
120 |
+
# Function to select a sample image
|
121 |
+
def use_sample_image(sample_image_path):
|
122 |
+
return sample_image_path # Returns selected sample image filepath
|
123 |
+
|
124 |
+
# Define Gradio Interface
|
125 |
+
with gr.Blocks() as app:
|
126 |
+
gr.HTML(html_content) # Display `re.html` content in Gradio
|
127 |
+
gr.Markdown("## Bone Fracture Detection System")
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
name = gr.Textbox(label="Patient Name")
|
131 |
+
age = gr.Number(label="Age")
|
132 |
+
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
weight = gr.Number(label="Weight (kg)")
|
136 |
+
height = gr.Number(label="Height (cm)")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
140 |
+
cause = gr.Textbox(label="Cause of Injury")
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
147 |
+
select_button = gr.Button("Load Sample Image")
|
148 |
+
|
149 |
+
submit_button = gr.Button("Generate Report")
|
150 |
+
output_file = gr.File(label="Download Report")
|
151 |
+
|
152 |
+
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
|
153 |
+
|
154 |
+
submit_button.click(
|
155 |
+
generate_report,
|
156 |
+
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
157 |
+
outputs=[output_file],
|
158 |
+
)
|
159 |
+
|
160 |
+
# Launch the Gradio app
|
161 |
+
if __name__ == "__main__":
|
162 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
numpy
|
3 |
+
opencv-python-headless
|
4 |
+
fpdf
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
gradio
|
8 |
+
tensorflow
|
9 |
+
Pillow
|
10 |
+
reportlab
|