Delete flask_app.py
Browse files- flask_app.py +0 -78
flask_app.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
from flask import Flask, render_template, request, send_file
|
2 |
-
import os
|
3 |
-
import tensorflow as tf
|
4 |
-
import numpy as np
|
5 |
-
from tensorflow.keras.preprocessing import image
|
6 |
-
from PIL import Image
|
7 |
-
from reportlab.lib.pagesizes import letter
|
8 |
-
from reportlab.pdfgen import canvas
|
9 |
-
|
10 |
-
# Load the trained model
|
11 |
-
model = tf.keras.models.load_model("my_keras_model.h5")
|
12 |
-
|
13 |
-
app = Flask(__name__, template_folder="templates", static_folder="static")
|
14 |
-
|
15 |
-
# Function to process X-rays and generate a PDF report
|
16 |
-
def generate_report(name, age, gender, xray1, xray2):
|
17 |
-
image_size = (224, 224)
|
18 |
-
|
19 |
-
def predict_fracture(xray):
|
20 |
-
img = Image.open(xray).resize(image_size)
|
21 |
-
img_array = image.img_to_array(img) / 255.0
|
22 |
-
img_array = np.expand_dims(img_array, axis=0)
|
23 |
-
prediction = model.predict(img_array)[0][0]
|
24 |
-
return prediction
|
25 |
-
|
26 |
-
# Predict on both X-rays
|
27 |
-
prediction1 = predict_fracture(xray1)
|
28 |
-
prediction2 = predict_fracture(xray2)
|
29 |
-
avg_prediction = (prediction1 + prediction2) / 2
|
30 |
-
diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal"
|
31 |
-
|
32 |
-
# Injury severity classification
|
33 |
-
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
|
34 |
-
treatment = {
|
35 |
-
"Mild": "Rest, pain relievers, follow-up X-ray.",
|
36 |
-
"Moderate": "Plaster cast, possible minor surgery.",
|
37 |
-
"Severe": "Major surgery, metal implants, physiotherapy."
|
38 |
-
}[severity]
|
39 |
-
gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity]
|
40 |
-
private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity]
|
41 |
-
|
42 |
-
# Generate PDF report
|
43 |
-
report_path = f"{name}_fracture_report.pdf"
|
44 |
-
c = canvas.Canvas(report_path, pagesize=letter)
|
45 |
-
c.setFont("Helvetica", 12)
|
46 |
-
c.drawString(100, 750, f"Patient Name: {name}")
|
47 |
-
c.drawString(100, 730, f"Age: {age}")
|
48 |
-
c.drawString(100, 710, f"Gender: {gender}")
|
49 |
-
c.drawString(100, 690, f"Diagnosis: {diagnosed_class}")
|
50 |
-
c.drawString(100, 670, f"Injury Severity: {severity}")
|
51 |
-
c.drawString(100, 650, f"Recommended Treatment: {treatment}")
|
52 |
-
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
|
53 |
-
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
|
54 |
-
c.save()
|
55 |
-
|
56 |
-
return report_path # Return path for auto-download
|
57 |
-
|
58 |
-
# Flask Route: Serve HTML Page
|
59 |
-
@app.route("/")
|
60 |
-
def home():
|
61 |
-
return render_template("re.html")
|
62 |
-
|
63 |
-
# Flask Route: Handle Form Submission
|
64 |
-
@app.route("/submit_report", methods=["POST"])
|
65 |
-
def submit_report():
|
66 |
-
name = request.form["first_name"] + " " + request.form["surname"]
|
67 |
-
age = request.form["age"]
|
68 |
-
gender = request.form["gender"]
|
69 |
-
xray1 = request.files["xray_side"]
|
70 |
-
xray2 = request.files["xray_top"]
|
71 |
-
|
72 |
-
# Generate PDF report
|
73 |
-
pdf_path = generate_report(name, age, gender, xray1, xray2)
|
74 |
-
|
75 |
-
return send_file(pdf_path, as_attachment=True) # Auto-download report
|
76 |
-
|
77 |
-
if __name__ == "__main__":
|
78 |
-
app.run(host="0.0.0.0", port=7860, debug=False) # Run Flask on 7860
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|