Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@ import smtplib
|
|
3 |
import ssl
|
4 |
from email.message import EmailMessage
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import tensorflow as tf
|
@@ -12,16 +13,14 @@ from tensorflow.keras.preprocessing import image
|
|
12 |
from PIL import Image
|
13 |
from reportlab.lib.pagesizes import letter
|
14 |
from reportlab.pdfgen import canvas
|
15 |
-
from reportlab.lib import colors
|
16 |
-
from reportlab.platypus import Table, TableStyle
|
17 |
|
18 |
# Load the trained model
|
19 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
20 |
|
21 |
-
# Store generated report file
|
22 |
report_paths = {}
|
23 |
|
24 |
-
# Function to send email
|
25 |
def send_email(patient_email, patient_name):
|
26 |
if patient_name not in report_paths:
|
27 |
return "Error: Generate the report first before sending."
|
@@ -77,15 +76,7 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
77 |
|
78 |
# Predict fracture
|
79 |
prediction = predict_fracture(xray)
|
80 |
-
diagnosed_class = "
|
81 |
-
|
82 |
-
# Injury severity classification
|
83 |
-
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
84 |
-
|
85 |
-
# Save X-ray image for report
|
86 |
-
img = Image.open(xray).resize((300, 300))
|
87 |
-
img_path = f"{name}_xray.png"
|
88 |
-
img.save(img_path)
|
89 |
|
90 |
# Generate PDF report
|
91 |
report_path = f"{name}_fracture_report.pdf"
|
@@ -96,11 +87,16 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
96 |
|
97 |
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
100 |
|
101 |
c.save()
|
102 |
|
103 |
-
# Store
|
104 |
report_paths[name] = report_path
|
105 |
|
106 |
return report_path # Return file path
|
@@ -118,24 +114,29 @@ with gr.Blocks() as app:
|
|
118 |
weight = gr.Number(label="Weight (kg)")
|
119 |
height = gr.Number(label="Height (cm)")
|
120 |
|
|
|
|
|
|
|
|
|
121 |
with gr.Row():
|
122 |
email = gr.Textbox(label="Patient Email", type="email")
|
123 |
|
|
|
|
|
124 |
with gr.Row():
|
125 |
-
|
|
|
126 |
|
127 |
-
submit_button = gr.Button("Generate Report")
|
128 |
-
send_email_button = gr.Button("Send Report via Email")
|
129 |
output_file = gr.File(label="Download Report")
|
130 |
|
131 |
-
#
|
132 |
submit_button.click(
|
133 |
generate_report,
|
134 |
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
135 |
outputs=[output_file]
|
136 |
)
|
137 |
|
138 |
-
#
|
139 |
send_email_button.click(
|
140 |
send_email,
|
141 |
inputs=[email, name],
|
|
|
3 |
import ssl
|
4 |
from email.message import EmailMessage
|
5 |
|
6 |
+
# Force TensorFlow to use CPU to prevent CUDA errors
|
7 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
8 |
|
9 |
import gradio as gr
|
10 |
import tensorflow as tf
|
|
|
13 |
from PIL import Image
|
14 |
from reportlab.lib.pagesizes import letter
|
15 |
from reportlab.pdfgen import canvas
|
|
|
|
|
16 |
|
17 |
# Load the trained model
|
18 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
19 |
|
20 |
+
# Store generated report file paths
|
21 |
report_paths = {}
|
22 |
|
23 |
+
# Function to send email with the report
|
24 |
def send_email(patient_email, patient_name):
|
25 |
if patient_name not in report_paths:
|
26 |
return "Error: Generate the report first before sending."
|
|
|
76 |
|
77 |
# Predict fracture
|
78 |
prediction = predict_fracture(xray)
|
79 |
+
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# Generate PDF report
|
82 |
report_path = f"{name}_fracture_report.pdf"
|
|
|
87 |
|
88 |
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
89 |
|
90 |
+
# Save X-ray image for report
|
91 |
+
img = Image.open(xray).resize((300, 300))
|
92 |
+
img_path = f"{name}_xray.png"
|
93 |
+
img.save(img_path)
|
94 |
+
|
95 |
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
96 |
|
97 |
c.save()
|
98 |
|
99 |
+
# Store file path for later use
|
100 |
report_paths[name] = report_path
|
101 |
|
102 |
return report_path # Return file path
|
|
|
114 |
weight = gr.Number(label="Weight (kg)")
|
115 |
height = gr.Number(label="Height (cm)")
|
116 |
|
117 |
+
with gr.Row():
|
118 |
+
allergies = gr.Textbox(label="Allergies")
|
119 |
+
cause = gr.Textbox(label="Cause of Injury")
|
120 |
+
|
121 |
with gr.Row():
|
122 |
email = gr.Textbox(label="Patient Email", type="email")
|
123 |
|
124 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
125 |
+
|
126 |
with gr.Row():
|
127 |
+
submit_button = gr.Button("Generate Report")
|
128 |
+
send_email_button = gr.Button("Send Report via Email")
|
129 |
|
|
|
|
|
130 |
output_file = gr.File(label="Download Report")
|
131 |
|
132 |
+
# Generate Report Button
|
133 |
submit_button.click(
|
134 |
generate_report,
|
135 |
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
136 |
outputs=[output_file]
|
137 |
)
|
138 |
|
139 |
+
# Send Email Button
|
140 |
send_email_button.click(
|
141 |
send_email,
|
142 |
inputs=[email, name],
|