Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import tensorflow as tf
|
6 |
import numpy as np
|
|
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
@@ -14,6 +14,10 @@ from reportlab.platypus import Table, TableStyle
|
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# Read HTML content from `re.html`
|
18 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
html_content = file.read()
|
@@ -22,7 +26,7 @@ with open("templates/re.html", "r", encoding="utf-8") as file:
|
|
22 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
|
24 |
# Function to process X-ray and generate a PDF report
|
25 |
-
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
image_size = (224, 224)
|
27 |
|
28 |
def predict_fracture(xray_path):
|
@@ -34,55 +38,30 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
34 |
|
35 |
# Predict fracture
|
36 |
prediction = predict_fracture(xray)
|
37 |
-
diagnosed_class = "
|
38 |
-
|
39 |
-
# Injury severity classification
|
40 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
|
46 |
-
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
|
47 |
-
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
|
48 |
-
]
|
49 |
-
|
50 |
-
# Estimated cost & duration table
|
51 |
-
cost_duration_data = [
|
52 |
-
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
53 |
-
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
54 |
-
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
55 |
-
]
|
56 |
-
|
57 |
-
# Save X-ray image for report
|
58 |
-
img = Image.open(xray).resize((300, 300))
|
59 |
-
img_path = f"{name}_xray.png"
|
60 |
-
img.save(img_path)
|
61 |
|
62 |
# Generate PDF report
|
63 |
-
report_path = f"{name}_fracture_report.pdf"
|
64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
-
|
66 |
-
# Report title
|
67 |
c.setFont("Helvetica-Bold", 16)
|
68 |
c.drawString(200, 770, "Bone Fracture Detection Report")
|
69 |
|
70 |
-
# Patient details
|
71 |
patient_data = [
|
72 |
-
["Patient Name", name],
|
73 |
-
["
|
74 |
-
["Gender", gender],
|
75 |
-
["Weight", f"{weight} kg"],
|
76 |
-
["Height", f"{height} cm"],
|
77 |
["Allergies", allergies if allergies else "None"],
|
78 |
["Cause of Injury", cause if cause else "Not Provided"],
|
79 |
-
["Diagnosis", diagnosed_class],
|
80 |
-
["Injury Severity", severity]
|
81 |
]
|
82 |
|
83 |
-
# Format
|
84 |
def format_table(data):
|
85 |
-
table = Table(data, colWidths=[270, 270])
|
86 |
table.setStyle(TableStyle([
|
87 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
88 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
@@ -99,61 +78,80 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
99 |
patient_table.wrapOn(c, 480, 500)
|
100 |
patient_table.drawOn(c, 50, 620)
|
101 |
|
102 |
-
#
|
103 |
-
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
104 |
-
c.setFont("Helvetica-Bold", 12)
|
105 |
-
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
106 |
-
|
107 |
-
# Draw treatment and cost tables
|
108 |
-
treatment_table = format_table(treatment_data)
|
109 |
-
treatment_table.wrapOn(c, 480, 200)
|
110 |
-
treatment_table.drawOn(c, 50, 200)
|
111 |
-
|
112 |
-
cost_table = format_table(cost_duration_data)
|
113 |
-
cost_table.wrapOn(c, 480, 150)
|
114 |
-
cost_table.drawOn(c, 50, 80)
|
115 |
-
|
116 |
c.save()
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Function to select a sample image
|
121 |
def use_sample_image(sample_image_path):
|
122 |
-
return sample_image_path
|
123 |
|
124 |
# Define Gradio Interface
|
125 |
with gr.Blocks() as app:
|
126 |
-
gr.HTML(html_content)
|
127 |
gr.Markdown("## Bone Fracture Detection System")
|
128 |
-
|
129 |
with gr.Row():
|
130 |
name = gr.Textbox(label="Patient Name")
|
131 |
age = gr.Number(label="Age")
|
132 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
133 |
-
|
134 |
with gr.Row():
|
135 |
weight = gr.Number(label="Weight (kg)")
|
136 |
height = gr.Number(label="Height (cm)")
|
137 |
-
|
138 |
with gr.Row():
|
139 |
allergies = gr.Textbox(label="Allergies (if any)")
|
140 |
cause = gr.Textbox(label="Cause of Injury")
|
141 |
|
142 |
with gr.Row():
|
143 |
-
|
144 |
|
|
|
|
|
|
|
145 |
with gr.Row():
|
146 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
147 |
select_button = gr.Button("Load Sample Image")
|
148 |
|
149 |
-
submit_button = gr.Button("Generate Report")
|
150 |
output_file = gr.File(label="Download Report")
|
151 |
|
152 |
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
|
153 |
|
154 |
submit_button.click(
|
155 |
generate_report,
|
156 |
-
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
157 |
outputs=[output_file],
|
158 |
)
|
159 |
|
|
|
1 |
import os
|
2 |
+
import smtplib
|
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
6 |
+
from email.message import EmailMessage
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
|
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
|
17 |
+
# Ensure the reports directory exists
|
18 |
+
REPORTS_DIR = "reports"
|
19 |
+
os.makedirs(REPORTS_DIR, exist_ok=True)
|
20 |
+
|
21 |
# Read HTML content from `re.html`
|
22 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
23 |
html_content = file.read()
|
|
|
26 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
27 |
|
28 |
# Function to process X-ray and generate a PDF report
|
29 |
+
def generate_report(name, age, gender, weight, height, allergies, cause, xray, email):
|
30 |
image_size = (224, 224)
|
31 |
|
32 |
def predict_fracture(xray_path):
|
|
|
38 |
|
39 |
# Predict fracture
|
40 |
prediction = predict_fracture(xray)
|
41 |
+
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
|
|
|
|
42 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
43 |
|
44 |
+
# File paths
|
45 |
+
report_filename = f"{name}_fracture_report.pdf"
|
46 |
+
report_path = os.path.join(REPORTS_DIR, report_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Generate PDF report
|
|
|
49 |
c = canvas.Canvas(report_path, pagesize=letter)
|
|
|
|
|
50 |
c.setFont("Helvetica-Bold", 16)
|
51 |
c.drawString(200, 770, "Bone Fracture Detection Report")
|
52 |
|
53 |
+
# Patient details
|
54 |
patient_data = [
|
55 |
+
["Patient Name", name], ["Age", age], ["Gender", gender],
|
56 |
+
["Weight", f"{weight} kg"], ["Height", f"{height} cm"],
|
|
|
|
|
|
|
57 |
["Allergies", allergies if allergies else "None"],
|
58 |
["Cause of Injury", cause if cause else "Not Provided"],
|
59 |
+
["Diagnosis", diagnosed_class], ["Injury Severity", severity]
|
|
|
60 |
]
|
61 |
|
62 |
+
# Format table function
|
63 |
def format_table(data):
|
64 |
+
table = Table(data, colWidths=[270, 270])
|
65 |
table.setStyle(TableStyle([
|
66 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
67 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
|
|
78 |
patient_table.wrapOn(c, 480, 500)
|
79 |
patient_table.drawOn(c, 50, 620)
|
80 |
|
81 |
+
# Save and return report path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
c.save()
|
83 |
+
|
84 |
+
# Send email with report
|
85 |
+
send_email_with_attachment(email, report_path, name)
|
86 |
+
|
87 |
+
return report_path # For download
|
88 |
+
|
89 |
+
# Function to send email with PDF attachment
|
90 |
+
def send_email_with_attachment(to_email, file_path, patient_name):
|
91 |
+
sender_email = "[email protected]" # Replace with your email
|
92 |
+
sender_password = "your-email-password" # Use App Passwords if using Gmail
|
93 |
+
|
94 |
+
msg = EmailMessage()
|
95 |
+
msg["Subject"] = f"Bone Fracture Report for {patient_name}"
|
96 |
+
msg["From"] = sender_email
|
97 |
+
msg["To"] = to_email
|
98 |
+
msg.set_content(f"Dear {patient_name},\n\nAttached is your bone fracture detection report.\n\nThank you!")
|
99 |
+
|
100 |
+
# Attach PDF file
|
101 |
+
with open(file_path, "rb") as f:
|
102 |
+
file_data = f.read()
|
103 |
+
file_name = os.path.basename(file_path)
|
104 |
+
msg.add_attachment(file_data, maintype="application", subtype="pdf", filename=file_name)
|
105 |
+
|
106 |
+
# Send email
|
107 |
+
try:
|
108 |
+
with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:
|
109 |
+
server.login(sender_email, sender_password)
|
110 |
+
server.send_message(msg)
|
111 |
+
print(f"Email sent to {to_email}")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Failed to send email: {e}")
|
114 |
|
115 |
# Function to select a sample image
|
116 |
def use_sample_image(sample_image_path):
|
117 |
+
return sample_image_path
|
118 |
|
119 |
# Define Gradio Interface
|
120 |
with gr.Blocks() as app:
|
121 |
+
gr.HTML(html_content)
|
122 |
gr.Markdown("## Bone Fracture Detection System")
|
123 |
+
|
124 |
with gr.Row():
|
125 |
name = gr.Textbox(label="Patient Name")
|
126 |
age = gr.Number(label="Age")
|
127 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
128 |
+
|
129 |
with gr.Row():
|
130 |
weight = gr.Number(label="Weight (kg)")
|
131 |
height = gr.Number(label="Height (cm)")
|
132 |
+
|
133 |
with gr.Row():
|
134 |
allergies = gr.Textbox(label="Allergies (if any)")
|
135 |
cause = gr.Textbox(label="Cause of Injury")
|
136 |
|
137 |
with gr.Row():
|
138 |
+
email = gr.Textbox(label="Patient Email")
|
139 |
|
140 |
+
with gr.Row():
|
141 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
142 |
+
|
143 |
with gr.Row():
|
144 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
145 |
select_button = gr.Button("Load Sample Image")
|
146 |
|
147 |
+
submit_button = gr.Button("Generate Report & Send Email")
|
148 |
output_file = gr.File(label="Download Report")
|
149 |
|
150 |
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
|
151 |
|
152 |
submit_button.click(
|
153 |
generate_report,
|
154 |
+
inputs=[name, age, gender, weight, height, allergies, cause, xray, email],
|
155 |
outputs=[output_file],
|
156 |
)
|
157 |
|