Update app.py
Browse files
app.py
CHANGED
@@ -14,15 +14,11 @@ from reportlab.platypus import Table, TableStyle
|
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
|
17 |
-
# Read HTML content from `re.html`
|
18 |
-
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
-
html_content = file.read()
|
20 |
-
|
21 |
# List of sample images
|
22 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
|
24 |
# Function to process X-ray and generate a PDF report
|
25 |
-
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
image_size = (224, 224)
|
27 |
|
28 |
def predict_fracture(xray_path):
|
@@ -34,25 +30,13 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
34 |
|
35 |
# Predict fracture
|
36 |
prediction = predict_fracture(xray)
|
37 |
-
diagnosed_class = "
|
38 |
-
|
39 |
-
# Injury severity classification
|
40 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
|
47 |
-
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
|
48 |
-
]
|
49 |
-
|
50 |
-
# Estimated cost & duration table
|
51 |
-
cost_duration_data = [
|
52 |
-
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
53 |
-
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
54 |
-
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
55 |
-
]
|
56 |
|
57 |
# Save X-ray image for report
|
58 |
img = Image.open(xray).resize((300, 300))
|
@@ -62,27 +46,35 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
62 |
# Generate PDF report
|
63 |
report_path = f"{name}_fracture_report.pdf"
|
64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
-
|
|
|
|
|
|
|
66 |
# Report title
|
67 |
c.setFont("Helvetica-Bold", 16)
|
68 |
-
c.drawString(
|
|
|
|
|
|
|
69 |
|
70 |
-
# Patient details
|
71 |
patient_data = [
|
72 |
-
["Patient Name", name],
|
73 |
["Age", age],
|
74 |
["Gender", gender],
|
|
|
|
|
75 |
["Weight", f"{weight} kg"],
|
76 |
["Height", f"{height} cm"],
|
77 |
-
["Allergies", allergies if allergies else "None"],
|
78 |
-
["Cause of Injury", cause if cause else "Not Provided"],
|
79 |
["Diagnosis", diagnosed_class],
|
80 |
["Injury Severity", severity]
|
81 |
]
|
82 |
|
83 |
# Format and align tables
|
84 |
def format_table(data):
|
85 |
-
table = Table(data, colWidths=[
|
86 |
table.setStyle(TableStyle([
|
87 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
88 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
@@ -96,22 +88,22 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
96 |
|
97 |
# Draw patient details table
|
98 |
patient_table = format_table(patient_data)
|
99 |
-
patient_table.wrapOn(c,
|
100 |
patient_table.drawOn(c, 50, 620)
|
101 |
|
102 |
# Load and insert X-ray image
|
103 |
-
c.drawInlineImage(img_path, 50,
|
104 |
c.setFont("Helvetica-Bold", 12)
|
105 |
-
c.drawString(120,
|
106 |
-
|
107 |
-
# Draw treatment and cost tables
|
108 |
-
treatment_table = format_table(treatment_data)
|
109 |
-
treatment_table.wrapOn(c, 480, 200)
|
110 |
-
treatment_table.drawOn(c, 50, 200)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
c.save()
|
117 |
|
@@ -123,25 +115,54 @@ def use_sample_image(sample_image_path):
|
|
123 |
|
124 |
# Define Gradio Interface
|
125 |
with gr.Blocks() as app:
|
126 |
-
gr.
|
127 |
-
gr.Markdown("## Bone Fracture Detection System")
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
with gr.Row():
|
130 |
-
name = gr.Textbox(label="Patient Name")
|
131 |
age = gr.Number(label="Age")
|
132 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
with gr.Row():
|
135 |
weight = gr.Number(label="Weight (kg)")
|
136 |
height = gr.Number(label="Height (cm)")
|
137 |
-
|
138 |
with gr.Row():
|
139 |
-
allergies = gr.Textbox(label="Allergies (if any)")
|
140 |
-
cause = gr.Textbox(label="Cause of Injury")
|
141 |
|
142 |
with gr.Row():
|
143 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
144 |
-
|
145 |
with gr.Row():
|
146 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
147 |
select_button = gr.Button("Load Sample Image")
|
@@ -153,7 +174,7 @@ with gr.Blocks() as app:
|
|
153 |
|
154 |
submit_button.click(
|
155 |
generate_report,
|
156 |
-
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
157 |
outputs=[output_file],
|
158 |
)
|
159 |
|
|
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# List of sample images
|
18 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
19 |
|
20 |
# Function to process X-ray and generate a PDF report
|
21 |
+
def generate_report(name, age, gender, weight, height, address, parent_name, allergies, cause, xray):
|
22 |
image_size = (224, 224)
|
23 |
|
24 |
def predict_fracture(xray_path):
|
|
|
30 |
|
31 |
# Predict fracture
|
32 |
prediction = predict_fracture(xray)
|
33 |
+
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
|
|
|
|
34 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
35 |
|
36 |
+
# Hospital details
|
37 |
+
hospital_name = "City Care Hospital"
|
38 |
+
hospital_address = "123 Health Street, MedCity, India"
|
39 |
+
doctor_name = "Dr. Anil Sharma (Orthopedic Specialist)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Save X-ray image for report
|
42 |
img = Image.open(xray).resize((300, 300))
|
|
|
46 |
# Generate PDF report
|
47 |
report_path = f"{name}_fracture_report.pdf"
|
48 |
c = canvas.Canvas(report_path, pagesize=letter)
|
49 |
+
|
50 |
+
# Set page margins
|
51 |
+
c.translate(20, 20)
|
52 |
+
|
53 |
# Report title
|
54 |
c.setFont("Helvetica-Bold", 16)
|
55 |
+
c.drawString(180, 750, hospital_name)
|
56 |
+
c.setFont("Helvetica", 12)
|
57 |
+
c.drawString(140, 735, hospital_address)
|
58 |
+
c.drawString(180, 720, f"Attending Doctor: {doctor_name}")
|
59 |
|
60 |
+
# Patient details
|
61 |
patient_data = [
|
62 |
+
["Patient Name", name[:50]],
|
63 |
["Age", age],
|
64 |
["Gender", gender],
|
65 |
+
["Parent's Name", parent_name[:50]],
|
66 |
+
["Address", address[:70]],
|
67 |
["Weight", f"{weight} kg"],
|
68 |
["Height", f"{height} cm"],
|
69 |
+
["Allergies", allergies[:50] if allergies else "None"],
|
70 |
+
["Cause of Injury", cause[:50] if cause else "Not Provided"],
|
71 |
["Diagnosis", diagnosed_class],
|
72 |
["Injury Severity", severity]
|
73 |
]
|
74 |
|
75 |
# Format and align tables
|
76 |
def format_table(data):
|
77 |
+
table = Table(data, colWidths=[200, 350])
|
78 |
table.setStyle(TableStyle([
|
79 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
80 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
|
|
88 |
|
89 |
# Draw patient details table
|
90 |
patient_table = format_table(patient_data)
|
91 |
+
patient_table.wrapOn(c, 450, 500)
|
92 |
patient_table.drawOn(c, 50, 620)
|
93 |
|
94 |
# Load and insert X-ray image
|
95 |
+
c.drawInlineImage(img_path, 50, 350, width=250, height=250)
|
96 |
c.setFont("Helvetica-Bold", 12)
|
97 |
+
c.drawString(120, 320, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# Injury details
|
100 |
+
c.setFont("Helvetica-Bold", 14)
|
101 |
+
c.drawString(50, 270, "Injury Details and Treatment Recommendations")
|
102 |
+
c.setFont("Helvetica", 12)
|
103 |
+
c.drawString(50, 250, "• Immobilization and pain management")
|
104 |
+
c.drawString(50, 235, "• Follow-up X-rays required")
|
105 |
+
c.drawString(50, 220, "• Surgical intervention if needed")
|
106 |
+
c.drawString(50, 205, "• Physiotherapy for recovery")
|
107 |
|
108 |
c.save()
|
109 |
|
|
|
115 |
|
116 |
# Define Gradio Interface
|
117 |
with gr.Blocks() as app:
|
118 |
+
gr.Markdown("## **Bone Fracture Detection System**")
|
|
|
119 |
|
120 |
+
# Informative Blog Section
|
121 |
+
with gr.Accordion("Bone Fractures - Symptoms, Causes, & Treatment", open=True):
|
122 |
+
gr.Markdown("""
|
123 |
+
**A fracture** is a break or crack in a bone caused by excessive force.
|
124 |
+
**Common Causes:**
|
125 |
+
- Traumatic injuries (sports, accidents, falls)
|
126 |
+
- Osteoporosis or cancer (weakened bones)
|
127 |
+
|
128 |
+
**Symptoms:**
|
129 |
+
- Severe pain, swelling, bruising
|
130 |
+
- Deformity or inability to use the limb
|
131 |
+
|
132 |
+
**Diagnosis:**
|
133 |
+
- X-rays, CT scans, MRI scans
|
134 |
+
|
135 |
+
**Treatment:**
|
136 |
+
- Plaster casts, splints, surgery if needed
|
137 |
+
- Pain management and physiotherapy
|
138 |
+
|
139 |
+
**First Aid:**
|
140 |
+
- Immobilize the area
|
141 |
+
- Apply a cold pack
|
142 |
+
- Seek medical help immediately
|
143 |
+
""")
|
144 |
+
|
145 |
+
# Patient Details Form
|
146 |
with gr.Row():
|
147 |
+
name = gr.Textbox(label="Patient Name", max_length=50)
|
148 |
age = gr.Number(label="Age")
|
149 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
parent_name = gr.Textbox(label="Parent's Name", max_length=50)
|
153 |
+
address = gr.Textbox(label="Address", max_length=70)
|
154 |
+
|
155 |
with gr.Row():
|
156 |
weight = gr.Number(label="Weight (kg)")
|
157 |
height = gr.Number(label="Height (cm)")
|
158 |
+
|
159 |
with gr.Row():
|
160 |
+
allergies = gr.Textbox(label="Allergies (if any, max 50 chars)", max_length=50)
|
161 |
+
cause = gr.Textbox(label="Cause of Injury (max 50 chars)", max_length=50)
|
162 |
|
163 |
with gr.Row():
|
164 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
165 |
+
|
166 |
with gr.Row():
|
167 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
168 |
select_button = gr.Button("Load Sample Image")
|
|
|
174 |
|
175 |
submit_button.click(
|
176 |
generate_report,
|
177 |
+
inputs=[name, age, gender, weight, height, address, parent_name, allergies, cause, xray],
|
178 |
outputs=[output_file],
|
179 |
)
|
180 |
|