Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import tensorflow as tf
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
@@ -11,6 +14,10 @@ from reportlab.pdfgen import canvas
|
|
11 |
from reportlab.lib import colors
|
12 |
from reportlab.platypus import Table, TableStyle
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
16 |
|
@@ -21,7 +28,7 @@ with open("templates/re.html", "r", encoding="utf-8") as file:
|
|
21 |
# List of sample images
|
22 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
|
24 |
-
# Function to
|
25 |
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
image_size = (224, 224)
|
27 |
|
@@ -56,13 +63,13 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
56 |
|
57 |
# Save X-ray image for report
|
58 |
img = Image.open(xray).resize((300, 300))
|
59 |
-
img_path = f"{name}_xray.png"
|
60 |
img.save(img_path)
|
61 |
|
62 |
# Generate PDF report
|
63 |
-
report_path = f"{name}_fracture_report.pdf"
|
64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
-
|
66 |
# Report title
|
67 |
c.setFont("Helvetica-Bold", 16)
|
68 |
c.drawString(200, 770, "Bone Fracture Detection Report")
|
@@ -82,7 +89,7 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
82 |
|
83 |
# Format and align tables
|
84 |
def format_table(data):
|
85 |
-
table = Table(data, colWidths=[270, 270])
|
86 |
table.setStyle(TableStyle([
|
87 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
88 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
@@ -94,17 +101,15 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
94 |
]))
|
95 |
return table
|
96 |
|
97 |
-
# Draw
|
98 |
patient_table = format_table(patient_data)
|
99 |
patient_table.wrapOn(c, 480, 500)
|
100 |
patient_table.drawOn(c, 50, 620)
|
101 |
|
102 |
-
# Load and insert X-ray image
|
103 |
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
104 |
c.setFont("Helvetica-Bold", 12)
|
105 |
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
106 |
|
107 |
-
# Draw treatment and cost tables
|
108 |
treatment_table = format_table(treatment_data)
|
109 |
treatment_table.wrapOn(c, 480, 200)
|
110 |
treatment_table.drawOn(c, 50, 200)
|
@@ -117,46 +122,63 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
117 |
|
118 |
return report_path # Return path for auto-download
|
119 |
|
120 |
-
# Function to
|
121 |
-
def
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Define Gradio Interface
|
125 |
with gr.Blocks() as app:
|
126 |
-
gr.HTML(html_content)
|
127 |
gr.Markdown("## Bone Fracture Detection System")
|
128 |
|
129 |
with gr.Row():
|
130 |
name = gr.Textbox(label="Patient Name")
|
131 |
age = gr.Number(label="Age")
|
132 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
133 |
-
|
|
|
134 |
with gr.Row():
|
135 |
weight = gr.Number(label="Weight (kg)")
|
136 |
height = gr.Number(label="Height (cm)")
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
allergies = gr.Textbox(label="Allergies (if any)")
|
140 |
-
cause = gr.Textbox(label="Cause of Injury")
|
141 |
|
142 |
with gr.Row():
|
143 |
-
|
144 |
-
|
145 |
-
with gr.Row():
|
146 |
-
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
147 |
-
select_button = gr.Button("Load Sample Image")
|
148 |
|
149 |
-
|
|
|
|
|
150 |
output_file = gr.File(label="Download Report")
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
submit_button.click(
|
155 |
-
generate_report,
|
156 |
-
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
157 |
-
outputs=[output_file],
|
158 |
-
)
|
159 |
|
160 |
-
# Launch the Gradio app
|
161 |
if __name__ == "__main__":
|
162 |
app.launch()
|
|
|
1 |
import os
|
2 |
+
import smtplib
|
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
6 |
+
from email.mime.multipart import MIMEMultipart
|
7 |
+
from email.mime.text import MIMEText
|
8 |
+
from email.mime.base import MIMEBase
|
9 |
+
from email import encoders
|
10 |
from tensorflow.keras.preprocessing import image
|
11 |
from PIL import Image
|
12 |
from reportlab.lib.pagesizes import letter
|
|
|
14 |
from reportlab.lib import colors
|
15 |
from reportlab.platypus import Table, TableStyle
|
16 |
|
17 |
+
# Ensure the "reports" directory exists
|
18 |
+
if not os.path.exists("reports"):
|
19 |
+
os.makedirs("reports")
|
20 |
+
|
21 |
# Load the trained model
|
22 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
23 |
|
|
|
28 |
# List of sample images
|
29 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
30 |
|
31 |
+
# Function to generate and save the report
|
32 |
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
33 |
image_size = (224, 224)
|
34 |
|
|
|
63 |
|
64 |
# Save X-ray image for report
|
65 |
img = Image.open(xray).resize((300, 300))
|
66 |
+
img_path = f"reports/{name}_xray.png"
|
67 |
img.save(img_path)
|
68 |
|
69 |
# Generate PDF report
|
70 |
+
report_path = f"reports/{name}_fracture_report.pdf"
|
71 |
c = canvas.Canvas(report_path, pagesize=letter)
|
72 |
+
|
73 |
# Report title
|
74 |
c.setFont("Helvetica-Bold", 16)
|
75 |
c.drawString(200, 770, "Bone Fracture Detection Report")
|
|
|
89 |
|
90 |
# Format and align tables
|
91 |
def format_table(data):
|
92 |
+
table = Table(data, colWidths=[270, 270])
|
93 |
table.setStyle(TableStyle([
|
94 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
95 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
|
|
101 |
]))
|
102 |
return table
|
103 |
|
104 |
+
# Draw tables and images
|
105 |
patient_table = format_table(patient_data)
|
106 |
patient_table.wrapOn(c, 480, 500)
|
107 |
patient_table.drawOn(c, 50, 620)
|
108 |
|
|
|
109 |
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
110 |
c.setFont("Helvetica-Bold", 12)
|
111 |
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
112 |
|
|
|
113 |
treatment_table = format_table(treatment_data)
|
114 |
treatment_table.wrapOn(c, 480, 200)
|
115 |
treatment_table.drawOn(c, 50, 200)
|
|
|
122 |
|
123 |
return report_path # Return path for auto-download
|
124 |
|
125 |
+
# Function to send email with attachment
|
126 |
+
def send_email(patient_email, report_path):
|
127 |
+
sender_email = "[email protected]"
|
128 |
+
sender_password = "your_email_password"
|
129 |
+
subject = "Bone Fracture Detection Report"
|
130 |
+
body = "Attached is your bone fracture detection report."
|
131 |
+
|
132 |
+
msg = MIMEMultipart()
|
133 |
+
msg["From"] = sender_email
|
134 |
+
msg["To"] = patient_email
|
135 |
+
msg["Subject"] = subject
|
136 |
+
msg.attach(MIMEText(body, "plain"))
|
137 |
+
|
138 |
+
with open(report_path, "rb") as attachment:
|
139 |
+
part = MIMEBase("application", "octet-stream")
|
140 |
+
part.set_payload(attachment.read())
|
141 |
+
encoders.encode_base64(part)
|
142 |
+
part.add_header("Content-Disposition", f"attachment; filename={os.path.basename(report_path)}")
|
143 |
+
msg.attach(part)
|
144 |
+
|
145 |
+
try:
|
146 |
+
server = smtplib.SMTP("smtp.gmail.com", 587)
|
147 |
+
server.starttls()
|
148 |
+
server.login(sender_email, sender_password)
|
149 |
+
server.sendmail(sender_email, patient_email, msg.as_string())
|
150 |
+
server.quit()
|
151 |
+
return "Email Sent Successfully!"
|
152 |
+
except Exception as e:
|
153 |
+
return f"Error sending email: {str(e)}"
|
154 |
|
155 |
# Define Gradio Interface
|
156 |
with gr.Blocks() as app:
|
157 |
+
gr.HTML(html_content)
|
158 |
gr.Markdown("## Bone Fracture Detection System")
|
159 |
|
160 |
with gr.Row():
|
161 |
name = gr.Textbox(label="Patient Name")
|
162 |
age = gr.Number(label="Age")
|
163 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
164 |
+
patient_email = gr.Textbox(label="Patient Email")
|
165 |
+
|
166 |
with gr.Row():
|
167 |
weight = gr.Number(label="Weight (kg)")
|
168 |
height = gr.Number(label="Height (cm)")
|
|
|
|
|
|
|
|
|
169 |
|
170 |
with gr.Row():
|
171 |
+
allergies = gr.Textbox(label="Allergies")
|
172 |
+
cause = gr.Textbox(label="Cause of Injury")
|
|
|
|
|
|
|
173 |
|
174 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
175 |
+
generate_button = gr.Button("Generate & Download Report")
|
176 |
+
send_email_button = gr.Button("Send Report via Email")
|
177 |
output_file = gr.File(label="Download Report")
|
178 |
+
status = gr.Textbox(label="Email Status", interactive=False)
|
179 |
|
180 |
+
generate_button.click(generate_report, inputs=[name, age, gender, weight, height, allergies, cause, xray], outputs=[output_file])
|
181 |
+
send_email_button.click(send_email, inputs=[patient_email, output_file], outputs=[status])
|
|
|
|
|
|
|
|
|
|
|
182 |
|
|
|
183 |
if __name__ == "__main__":
|
184 |
app.launch()
|