Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import tensorflow as tf
|
6 |
import numpy as np
|
7 |
from tensorflow.keras.preprocessing import image
|
|
|
|
|
|
|
|
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
10 |
from reportlab.pdfgen import canvas
|
@@ -18,11 +21,14 @@ model = tf.keras.models.load_model("my_keras_model.h5")
|
|
18 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
html_content = file.read()
|
20 |
|
|
|
|
|
|
|
21 |
# List of sample images
|
22 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
|
24 |
# Function to process X-ray and generate a PDF report
|
25 |
-
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
image_size = (224, 224)
|
27 |
|
28 |
def predict_fracture(xray_path):
|
@@ -34,7 +40,7 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
34 |
|
35 |
# Predict fracture
|
36 |
prediction = predict_fracture(xray)
|
37 |
-
diagnosed_class = "
|
38 |
|
39 |
# Injury severity classification
|
40 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
@@ -56,11 +62,11 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
56 |
|
57 |
# Save X-ray image for report
|
58 |
img = Image.open(xray).resize((300, 300))
|
59 |
-
img_path = f"{name}_xray.png"
|
60 |
img.save(img_path)
|
61 |
|
62 |
# Generate PDF report
|
63 |
-
report_path = f"{name}_fracture_report.pdf"
|
64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
|
66 |
# Report title
|
@@ -117,46 +123,57 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
117 |
|
118 |
return report_path # Return path for auto-download
|
119 |
|
120 |
-
# Function to
|
121 |
-
def
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Define Gradio Interface
|
125 |
with gr.Blocks() as app:
|
126 |
-
gr.HTML(html_content)
|
127 |
gr.Markdown("## Bone Fracture Detection System")
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
name = gr.Textbox(label="Patient Name")
|
131 |
-
age = gr.Number(label="Age")
|
132 |
-
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
133 |
-
|
134 |
-
with gr.Row():
|
135 |
-
weight = gr.Number(label="Weight (kg)")
|
136 |
-
height = gr.Number(label="Height (cm)")
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
allergies = gr.Textbox(label="Allergies (if any)")
|
140 |
-
cause = gr.Textbox(label="Cause of Injury")
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
|
149 |
submit_button = gr.Button("Generate Report")
|
150 |
output_file = gr.File(label="Download Report")
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
submit_button.click(
|
155 |
-
generate_report,
|
156 |
-
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
157 |
-
outputs=[output_file],
|
158 |
-
)
|
159 |
|
160 |
-
# Launch the Gradio app
|
161 |
if __name__ == "__main__":
|
162 |
app.launch()
|
|
|
1 |
import os
|
2 |
+
import smtplib
|
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
6 |
from tensorflow.keras.preprocessing import image
|
7 |
+
from email.mime.multipart import MIMEMultipart
|
8 |
+
from email.mime.text import MIMEText
|
9 |
+
from email.mime.base import MIMEBase
|
10 |
+
from email import encoders
|
11 |
from PIL import Image
|
12 |
from reportlab.lib.pagesizes import letter
|
13 |
from reportlab.pdfgen import canvas
|
|
|
21 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
22 |
html_content = file.read()
|
23 |
|
24 |
+
# Ensure reports directory exists
|
25 |
+
os.makedirs("reports", exist_ok=True)
|
26 |
+
|
27 |
# List of sample images
|
28 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
29 |
|
30 |
# Function to process X-ray and generate a PDF report
|
31 |
+
def generate_report(name, age, gender, weight, height, allergies, cause, email, xray):
|
32 |
image_size = (224, 224)
|
33 |
|
34 |
def predict_fracture(xray_path):
|
|
|
40 |
|
41 |
# Predict fracture
|
42 |
prediction = predict_fracture(xray)
|
43 |
+
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
44 |
|
45 |
# Injury severity classification
|
46 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
|
|
62 |
|
63 |
# Save X-ray image for report
|
64 |
img = Image.open(xray).resize((300, 300))
|
65 |
+
img_path = f"reports/{name}_xray.png"
|
66 |
img.save(img_path)
|
67 |
|
68 |
# Generate PDF report
|
69 |
+
report_path = f"reports/{name}_fracture_report.pdf"
|
70 |
c = canvas.Canvas(report_path, pagesize=letter)
|
71 |
|
72 |
# Report title
|
|
|
123 |
|
124 |
return report_path # Return path for auto-download
|
125 |
|
126 |
+
# Function to send email with the report attached
|
127 |
+
def send_email_report(email, report_path):
|
128 |
+
sender_email = "[email protected]"
|
129 |
+
sender_password = "1w3r5y7i9pW$" # Use an app password or environment variable
|
130 |
+
subject = "Your Bone Fracture Detection Report"
|
131 |
+
|
132 |
+
msg = MIMEMultipart()
|
133 |
+
msg["From"] = sender_email
|
134 |
+
msg["To"] = email
|
135 |
+
msg["Subject"] = subject
|
136 |
+
|
137 |
+
body = "Dear Patient,\n\nPlease find attached your bone fracture detection report.\n\nBest Regards,\nYour Medical Team"
|
138 |
+
msg.attach(MIMEText(body, "plain"))
|
139 |
+
|
140 |
+
with open(report_path, "rb") as attachment:
|
141 |
+
part = MIMEBase("application", "octet-stream")
|
142 |
+
part.set_payload(attachment.read())
|
143 |
+
encoders.encode_base64(part)
|
144 |
+
part.add_header("Content-Disposition", f"attachment; filename={os.path.basename(report_path)}")
|
145 |
+
msg.attach(part)
|
146 |
+
|
147 |
+
try:
|
148 |
+
with smtplib.SMTP("smtp.gmail.com", 587) as server:
|
149 |
+
server.starttls()
|
150 |
+
server.login(sender_email, sender_password)
|
151 |
+
server.sendmail(sender_email, email, msg.as_string())
|
152 |
+
return "Email Sent Successfully"
|
153 |
+
except Exception as e:
|
154 |
+
return f"Failed to Send Email: {str(e)}"
|
155 |
|
156 |
# Define Gradio Interface
|
157 |
with gr.Blocks() as app:
|
158 |
+
gr.HTML(html_content)
|
159 |
gr.Markdown("## Bone Fracture Detection System")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
name = gr.Textbox(label="Patient Name")
|
162 |
+
age = gr.Number(label="Age")
|
163 |
+
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
164 |
+
weight = gr.Number(label="Weight (kg)")
|
165 |
+
height = gr.Number(label="Height (cm)")
|
166 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
167 |
+
cause = gr.Textbox(label="Cause of Injury")
|
168 |
+
email = gr.Textbox(label="Patient Email")
|
169 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
170 |
|
171 |
submit_button = gr.Button("Generate Report")
|
172 |
output_file = gr.File(label="Download Report")
|
173 |
+
email_button = gr.Button("Send Email Report")
|
174 |
|
175 |
+
submit_button.click(generate_report, inputs=[name, age, gender, weight, height, allergies, cause, email, xray], outputs=[output_file])
|
176 |
+
email_button.click(send_email_report, inputs=[email, output_file], outputs=[])
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
178 |
if __name__ == "__main__":
|
179 |
app.launch()
|