Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from tensorflow.keras.preprocessing import image
|
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
10 |
from reportlab.pdfgen import canvas
|
|
|
|
|
11 |
|
12 |
# Load the trained model
|
13 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
@@ -17,7 +19,7 @@ with open("templates/re.html", "r", encoding="utf-8") as file:
|
|
17 |
html_content = file.read()
|
18 |
|
19 |
# Function to process X-rays and generate a PDF report
|
20 |
-
def generate_report(name, age, gender, xray1, xray2):
|
21 |
image_size = (224, 224)
|
22 |
|
23 |
def predict_fracture(xray_path):
|
@@ -35,26 +37,68 @@ def generate_report(name, age, gender, xray1, xray2):
|
|
35 |
|
36 |
# Injury severity classification
|
37 |
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
|
38 |
-
|
39 |
-
"Mild": "
|
40 |
-
"Moderate": "
|
41 |
-
"Severe": "
|
42 |
-
}
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Generate PDF report
|
47 |
report_path = f"{name}_fracture_report.pdf"
|
48 |
c = canvas.Canvas(report_path, pagesize=letter)
|
|
|
|
|
|
|
|
|
49 |
c.setFont("Helvetica", 12)
|
50 |
-
c.drawString(100,
|
51 |
-
c.drawString(100,
|
52 |
-
c.drawString(100,
|
53 |
-
c.drawString(100,
|
54 |
-
c.drawString(100,
|
55 |
-
|
56 |
-
|
57 |
-
c.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
c.save()
|
59 |
|
60 |
return report_path # Return path for auto-download
|
@@ -69,6 +113,10 @@ with gr.Blocks() as app:
|
|
69 |
age = gr.Number(label="Age")
|
70 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
71 |
|
|
|
|
|
|
|
|
|
72 |
with gr.Row():
|
73 |
xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1")
|
74 |
xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2")
|
@@ -78,7 +126,7 @@ with gr.Blocks() as app:
|
|
78 |
|
79 |
submit_button.click(
|
80 |
generate_report,
|
81 |
-
inputs=[name, age, gender, xray1, xray2],
|
82 |
outputs=[output_file],
|
83 |
)
|
84 |
|
|
|
8 |
from PIL import Image
|
9 |
from reportlab.lib.pagesizes import letter
|
10 |
from reportlab.pdfgen import canvas
|
11 |
+
from reportlab.lib import colors
|
12 |
+
from reportlab.platypus import Table, TableStyle
|
13 |
|
14 |
# Load the trained model
|
15 |
model = tf.keras.models.load_model("my_keras_model.h5")
|
|
|
19 |
html_content = file.read()
|
20 |
|
21 |
# Function to process X-rays and generate a PDF report
|
22 |
+
def generate_report(name, age, gender, allergies, cause, xray1, xray2):
|
23 |
image_size = (224, 224)
|
24 |
|
25 |
def predict_fracture(xray_path):
|
|
|
37 |
|
38 |
# Injury severity classification
|
39 |
severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
|
40 |
+
treatment_details = {
|
41 |
+
"Mild": "Your fracture is classified as **Mild**. It may heal with rest, pain relievers, and a follow-up X-ray. Avoid excessive movement of the affected area.",
|
42 |
+
"Moderate": "Your fracture is classified as **Moderate**. You may require a plaster cast, splint, or minor surgery. Recovery takes **4-8 weeks**.",
|
43 |
+
"Severe": "Your fracture is classified as **Severe**. Surgery with metal implants and extensive physiotherapy is required. Recovery takes **several months** with proper rehabilitation."
|
44 |
+
}
|
45 |
+
treatment = treatment_details[severity]
|
46 |
+
|
47 |
+
# Estimated cost & duration
|
48 |
+
cost_duration_data = [
|
49 |
+
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
50 |
+
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
51 |
+
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
52 |
+
]
|
53 |
+
|
54 |
+
# Save X-ray images for report
|
55 |
+
img1 = Image.open(xray1).resize((300, 300))
|
56 |
+
img2 = Image.open(xray2).resize((300, 300))
|
57 |
+
img1_path = f"{name}_xray1.png"
|
58 |
+
img2_path = f"{name}_xray2.png"
|
59 |
+
img1.save(img1_path)
|
60 |
+
img2.save(img2_path)
|
61 |
|
62 |
# Generate PDF report
|
63 |
report_path = f"{name}_fracture_report.pdf"
|
64 |
c = canvas.Canvas(report_path, pagesize=letter)
|
65 |
+
c.setFont("Helvetica-Bold", 14)
|
66 |
+
c.drawString(200, 770, "Bone Fracture Detection Report")
|
67 |
+
|
68 |
+
# Patient details
|
69 |
c.setFont("Helvetica", 12)
|
70 |
+
c.drawString(100, 740, f"Patient Name: {name}")
|
71 |
+
c.drawString(100, 720, f"Age: {age}")
|
72 |
+
c.drawString(100, 700, f"Gender: {gender}")
|
73 |
+
c.drawString(100, 680, f"Allergies: {allergies if allergies else 'None'}")
|
74 |
+
c.drawString(100, 660, f"Cause of Injury: {cause if cause else 'Not Provided'}")
|
75 |
+
|
76 |
+
# Diagnosis
|
77 |
+
c.setFont("Helvetica-Bold", 12)
|
78 |
+
c.drawString(100, 630, "Diagnosis & Treatment Plan:")
|
79 |
+
c.setFont("Helvetica", 11)
|
80 |
+
c.drawString(100, 610, f"Fracture Detected: {diagnosed_class}")
|
81 |
+
c.drawString(100, 590, f"Injury Severity: {severity}")
|
82 |
+
c.setFont("Helvetica", 10)
|
83 |
+
c.drawString(100, 570, f"{treatment}")
|
84 |
+
|
85 |
+
# Load and insert X-ray images
|
86 |
+
c.drawInlineImage(img1_path, 50, 250, width=250, height=250)
|
87 |
+
c.drawInlineImage(img2_path, 320, 250, width=250, height=250)
|
88 |
+
|
89 |
+
# Cost estimation table
|
90 |
+
table = Table(cost_duration_data)
|
91 |
+
table.setStyle(TableStyle([
|
92 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
|
93 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
94 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
95 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
96 |
+
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
|
97 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black)
|
98 |
+
]))
|
99 |
+
table.wrapOn(c, 400, 300)
|
100 |
+
table.drawOn(c, 100, 150)
|
101 |
+
|
102 |
c.save()
|
103 |
|
104 |
return report_path # Return path for auto-download
|
|
|
113 |
age = gr.Number(label="Age")
|
114 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
115 |
|
116 |
+
with gr.Row():
|
117 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
118 |
+
cause = gr.Textbox(label="Cause of Injury")
|
119 |
+
|
120 |
with gr.Row():
|
121 |
xray1 = gr.Image(type="filepath", label="Upload X-ray Image 1")
|
122 |
xray2 = gr.Image(type="filepath", label="Upload X-ray Image 2")
|
|
|
126 |
|
127 |
submit_button.click(
|
128 |
generate_report,
|
129 |
+
inputs=[name, age, gender, allergies, cause, xray1, xray2],
|
130 |
outputs=[output_file],
|
131 |
)
|
132 |
|