Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,9 @@ model = tf.keras.models.load_model("my_keras_model.h5")
|
|
18 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
html_content = file.read()
|
20 |
|
|
|
|
|
|
|
21 |
# Function to process X-ray and generate a PDF report
|
22 |
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
23 |
image_size = (224, 224)
|
@@ -35,7 +38,7 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
35 |
|
36 |
# Injury severity classification
|
37 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
38 |
-
|
39 |
# Treatment details table
|
40 |
treatment_data = [
|
41 |
["Severity Level", "Recommended Treatment", "Recovery Duration"],
|
@@ -114,6 +117,10 @@ def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
|
114 |
|
115 |
return report_path # Return path for auto-download
|
116 |
|
|
|
|
|
|
|
|
|
117 |
# Define Gradio Interface
|
118 |
with gr.Blocks() as app:
|
119 |
gr.HTML(html_content) # Display `re.html` content in Gradio
|
@@ -134,10 +141,16 @@ with gr.Blocks() as app:
|
|
134 |
|
135 |
with gr.Row():
|
136 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
|
|
|
|
|
|
|
|
137 |
|
138 |
submit_button = gr.Button("Generate Report")
|
139 |
output_file = gr.File(label="Download Report")
|
140 |
|
|
|
|
|
141 |
submit_button.click(
|
142 |
generate_report,
|
143 |
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
|
|
18 |
with open("templates/re.html", "r", encoding="utf-8") as file:
|
19 |
html_content = file.read()
|
20 |
|
21 |
+
# List of sample images
|
22 |
+
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
23 |
+
|
24 |
# Function to process X-ray and generate a PDF report
|
25 |
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
26 |
image_size = (224, 224)
|
|
|
38 |
|
39 |
# Injury severity classification
|
40 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
41 |
+
|
42 |
# Treatment details table
|
43 |
treatment_data = [
|
44 |
["Severity Level", "Recommended Treatment", "Recovery Duration"],
|
|
|
117 |
|
118 |
return report_path # Return path for auto-download
|
119 |
|
120 |
+
# Function to select a sample image
|
121 |
+
def use_sample_image(sample_image_path):
|
122 |
+
return sample_image_path # Returns selected sample image filepath
|
123 |
+
|
124 |
# Define Gradio Interface
|
125 |
with gr.Blocks() as app:
|
126 |
gr.HTML(html_content) # Display `re.html` content in Gradio
|
|
|
141 |
|
142 |
with gr.Row():
|
143 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
147 |
+
select_button = gr.Button("Load Sample Image")
|
148 |
|
149 |
submit_button = gr.Button("Generate Report")
|
150 |
output_file = gr.File(label="Download Report")
|
151 |
|
152 |
+
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
|
153 |
+
|
154 |
submit_button.click(
|
155 |
generate_report,
|
156 |
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|