ftx7go commited on
Commit
cdd4621
·
verified ·
1 Parent(s): 51c4f35

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from tensorflow.keras.preprocessing import image
5
+ from PIL import Image
6
+
7
+ # Load the trained model
8
+ model = tf.keras.models.load_model("my_keras_model.h5")
9
+
10
+ # Define image size based on the model's input requirement
11
+ image_size = (224, 224)
12
+
13
+ # Function to make predictions
14
+ def predict_image(img):
15
+ img = img.resize(image_size) # Resize image to model's expected size
16
+ img_array = image.img_to_array(img)
17
+ img_array = np.expand_dims(img_array, axis=0) / 255.0 # Normalize
18
+ prediction = model.predict(img_array)
19
+
20
+ # Assuming binary classification (fractured or normal)
21
+ class_names = ['Fractured', 'Normal']
22
+ predicted_class = class_names[int(prediction[0] > 0.5)] # Threshold at 0.5
23
+
24
+ return f"Prediction: {predicted_class} (Confidence: {prediction[0][0]:.2f})"
25
+
26
+ # Preloaded images for testing
27
+ sample_images = [
28
+ ("fracture1.jpg", "Fractured Example"),
29
+ ("fracture2.jpg", "Fractured Example"),
30
+ ("normal1.jpg", "Normal Example"),
31
+ ("normal2.jpg", "Normal Example"),
32
+ ]
33
+
34
+ # Define Gradio Interface
35
+ interface = gr.Interface(
36
+ fn=predict_image,
37
+ inputs=gr.Image(type="pil"),
38
+ outputs=gr.Textbox(),
39
+ examples=sample_images, # Preloaded images for testing
40
+ title="Bone Fracture Detection",
41
+ description="""
42
+ <h1 style='color: blue;'>Bone Fracture Detection Model</h1>
43
+ <p>This AI model predicts whether a given X-ray image shows a fracture or not.</p>
44
+ <p><b>Upload an image</b> or select from the provided samples to get a prediction.</p>
45
+ """,
46
+ )
47
+
48
+ # Launch the Gradio app
49
+ if __name__ == "__main__":
50
+ interface.launch()