Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from tensorflow.keras.preprocessing import image
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.pdfgen import canvas
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Load the trained model
|
12 |
+
model = tf.keras.models.load_model("my_keras_model.h5")
|
13 |
+
|
14 |
+
# Define image size
|
15 |
+
image_size = (224, 224)
|
16 |
+
|
17 |
+
# Function to detect fracture and get bounding box
|
18 |
+
def detect_fracture(xray):
|
19 |
+
img = Image.open(xray).convert("RGB").resize(image_size)
|
20 |
+
img_array = image.img_to_array(img) / 255.0
|
21 |
+
img_array = np.expand_dims(img_array, axis=0)
|
22 |
+
|
23 |
+
prediction = model.predict(img_array)[0][0]
|
24 |
+
|
25 |
+
# Dummy bounding box for now (assuming model enhancement needed)
|
26 |
+
# Ideally, the model should return bounding box coordinates
|
27 |
+
bbox = (50, 50, 150, 150) if prediction > 0.5 else None # Placeholder
|
28 |
+
|
29 |
+
return prediction, bbox, img
|
30 |
+
|
31 |
+
# Function to analyze injury severity
|
32 |
+
def analyze_injury(prediction):
|
33 |
+
if prediction < 0.3:
|
34 |
+
severity = "Mild"
|
35 |
+
treatment = "Rest, pain relievers, and follow-up X-ray."
|
36 |
+
gov_cost = "₹2,000 - ₹5,000"
|
37 |
+
private_cost = "₹10,000 - ₹20,000"
|
38 |
+
elif 0.3 <= prediction < 0.7:
|
39 |
+
severity = "Moderate"
|
40 |
+
treatment = "Plaster cast or splint; possible minor surgery."
|
41 |
+
gov_cost = "₹8,000 - ₹15,000"
|
42 |
+
private_cost = "₹30,000 - ₹60,000"
|
43 |
+
else:
|
44 |
+
severity = "Severe"
|
45 |
+
treatment = "Major surgery with metal implants, extensive physiotherapy."
|
46 |
+
gov_cost = "₹20,000 - ₹50,000"
|
47 |
+
private_cost = "₹1,00,000+"
|
48 |
+
|
49 |
+
return severity, treatment, gov_cost, private_cost
|
50 |
+
|
51 |
+
# Function to generate report
|
52 |
+
def generate_report(name, age, gender, xray1, xray2):
|
53 |
+
# Analyze X-ray images
|
54 |
+
prediction1, bbox1, img1 = detect_fracture(xray1)
|
55 |
+
prediction2, bbox2, img2 = detect_fracture(xray2)
|
56 |
+
|
57 |
+
avg_prediction = (prediction1 + prediction2) / 2
|
58 |
+
diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal"
|
59 |
+
severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction)
|
60 |
+
|
61 |
+
# Draw bounding box if fracture is detected
|
62 |
+
if bbox1:
|
63 |
+
draw = ImageDraw.Draw(img1)
|
64 |
+
draw.rectangle(bbox1, outline="red", width=5)
|
65 |
+
|
66 |
+
if bbox2:
|
67 |
+
draw = ImageDraw.Draw(img2)
|
68 |
+
draw.rectangle(bbox2, outline="red", width=5)
|
69 |
+
|
70 |
+
# Save modified images
|
71 |
+
img1_path = f"{name}_xray1.png"
|
72 |
+
img2_path = f"{name}_xray2.png"
|
73 |
+
img1.save(img1_path)
|
74 |
+
img2.save(img2_path)
|
75 |
+
|
76 |
+
# Generate PDF report
|
77 |
+
report_path = f"{name}_fracture_report.pdf"
|
78 |
+
c = canvas.Canvas(report_path, pagesize=letter)
|
79 |
+
c.setFont("Helvetica", 12)
|
80 |
+
|
81 |
+
c.drawString(100, 750, f"Patient Name: {name}")
|
82 |
+
c.drawString(100, 730, f"Age: {age}")
|
83 |
+
c.drawString(100, 710, f"Gender: {gender}")
|
84 |
+
c.drawString(100, 690, f"Diagnosis: {diagnosed_class}")
|
85 |
+
c.drawString(100, 670, f"Injury Severity: {severity}")
|
86 |
+
c.drawString(100, 650, f"Recommended Treatment: {treatment}")
|
87 |
+
c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
|
88 |
+
c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
|
89 |
+
|
90 |
+
c.save()
|
91 |
+
|
92 |
+
return report_path, img1_path, img2_path, diagnosed_class, severity, treatment, gov_cost, private_cost
|
93 |
+
|
94 |
+
# Define Gradio interface
|
95 |
+
interface = gr.Interface(
|
96 |
+
fn=generate_report,
|
97 |
+
inputs=[
|
98 |
+
gr.Textbox(label="Patient Name"),
|
99 |
+
gr.Number(label="Age"),
|
100 |
+
gr.Radio(["Male", "Female", "Other"], label="Gender"),
|
101 |
+
gr.Image(type="file", label="Upload X-ray Image 1"),
|
102 |
+
gr.Image(type="file", label="Upload X-ray Image 2"),
|
103 |
+
],
|
104 |
+
outputs=[
|
105 |
+
gr.File(label="Download Report"),
|
106 |
+
gr.Image(label="X-ray 1 with Fracture Highlight"),
|
107 |
+
gr.Image(label="X-ray 2 with Fracture Highlight"),
|
108 |
+
gr.Textbox(label="Fracture Detected"),
|
109 |
+
gr.Textbox(label="Injury Severity"),
|
110 |
+
gr.Textbox(label="Recommended Treatment"),
|
111 |
+
gr.Textbox(label="Estimated Cost (Govt Hospital)"),
|
112 |
+
gr.Textbox(label="Estimated Cost (Private Hospital)")
|
113 |
+
],
|
114 |
+
title="Bone Fracture Detection & Medical Report",
|
115 |
+
description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch the app
|
119 |
+
if __name__ == "__main__":
|
120 |
+
interface.launch()
|