from flask import Flask, render_template, request, send_file import gradio as gr import threading import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas import os # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") app = Flask(__name__, template_folder="templates", static_folder="static") # Ensure correct paths # Function to process X-rays and generate a PDF report def generate_report(name, age, gender, xray1, xray2): image_size = (224, 224) def predict_fracture(xray): img = Image.open(xray).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict on both X-rays prediction1 = predict_fracture(xray1) prediction2 = predict_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" # Injury severity classification severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" treatment = { "Mild": "Rest, pain relievers, follow-up X-ray.", "Moderate": "Plaster cast, possible minor surgery.", "Severe": "Major surgery, metal implants, physiotherapy." }[severity] gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path # Return path for auto-download # Flask Route: Serve HTML Page @app.route("/") def home(): return render_template("re.html") # Flask Route: Handle Form Submission @app.route("/submit_report", methods=["POST"]) def submit_report(): name = request.form["first_name"] + " " + request.form["surname"] age = request.form["age"] gender = request.form["gender"] xray1 = request.files["xray_side"] xray2 = request.files["xray_top"] # Generate PDF report pdf_path = generate_report(name, age, gender, xray1, xray2) return send_file(pdf_path, as_attachment=True) # Auto-download report # Run Gradio in a separate thread def run_gradio(): interface = gr.Interface( fn=generate_report, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(["Male", "Female", "Other"], label="Gender"), gr.Image(type="file", label="Upload X-ray Image 1"), gr.Image(type="file", label="Upload X-ray Image 2"), ], outputs=gr.File(label="Download Report"), title="Bone Fracture Detection & Medical Report", description="Enter patient details, upload two X-ray images, and generate a detailed medical report." ) interface.launch(share=True) if __name__ == "__main__": threading.Thread(target=run_gradio).start() app.run(host="0.0.0.0", port=7860, debug=True) # Flask runs separately