import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas import os # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Define image size based on the model's input requirement image_size = (224, 224) # Function to analyze injury severity def analyze_injury(prediction): if prediction < 0.3: severity = "Mild" treatment = "Rest, pain relievers, and follow-up X-ray." gov_cost = "₹2,000 - ₹5,000" private_cost = "₹10,000 - ₹20,000" elif 0.3 <= prediction < 0.7: severity = "Moderate" treatment = "Plaster cast or splint; possible minor surgery." gov_cost = "₹8,000 - ₹15,000" private_cost = "₹30,000 - ₹60,000" else: severity = "Severe" treatment = "Major surgery with metal implants, extensive physiotherapy." gov_cost = "₹20,000 - ₹50,000" private_cost = "₹1,00,000+" return severity, treatment, gov_cost, private_cost # Function to generate report def generate_report(patient_name, age, gender, xray1, xray2): # Process X-ray 1 img1 = Image.open(xray1).resize(image_size) img_array1 = image.img_to_array(img1) img_array1 = np.expand_dims(img_array1, axis=0) / 255.0 prediction1 = model.predict(img_array1)[0][0] # Process X-ray 2 img2 = Image.open(xray2).resize(image_size) img_array2 = image.img_to_array(img2) img_array2 = np.expand_dims(img_array2, axis=0) / 255.0 prediction2 = model.predict(img_array2)[0][0] # Get final analysis avg_prediction = (prediction1 + prediction2) / 2 predicted_class = "Fractured" if avg_prediction > 0.5 else "Normal" severity, treatment, gov_cost, private_cost = analyze_injury(avg_prediction) # Generate PDF report_path = f"{patient_name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {patient_name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {predicted_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path # Define Gradio Interface interface = gr.Interface( fn=generate_report, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(["Male", "Female", "Other"], label="Gender"), gr.Image(type="file", label="Upload X-ray Image 1"), gr.Image(type="file", label="Upload X-ray Image 2"), ], outputs=gr.File(label="Download Report"), title="Bone Fracture Detection & Medical Report", description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates." ) # Launch the Gradio app if __name__ == "__main__": interface.launch()