import os import smtplib import ssl from email.message import EmailMessage # Force TensorFlow to use CPU os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Store generated report paths report_paths = {} # Function to send email def send_email(patient_email, patient_name): if patient_name not in report_paths or not os.path.exists(report_paths[patient_name]): return "Error: Generate the report first before sending." report_path = report_paths[patient_name] sender_email = "your_email@gmail.com" sender_password = "your_email_password" subject = f"Bone Fracture Report for {patient_name}" body = f"Dear {patient_name},\n\nYour bone fracture diagnosis report is attached.\n\nBest Regards,\nHospital Team" msg = EmailMessage() msg["From"] = sender_email msg["To"] = patient_email msg["Subject"] = subject msg.set_content(body) # Attach PDF with open(report_path, "rb") as file: msg.add_attachment(file.read(), maintype="application", subtype="pdf", filename=os.path.basename(report_path)) # Send email securely context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, sender_password) server.send_message(msg) return f"Report sent successfully to {patient_email}!" # Function to generate report def generate_report(name, age, gender, weight, height, allergies, cause, xray): if not name: return "Error: Please enter a patient name." image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict fracture prediction = predict_fracture(xray) diagnosed_class = "Normal" if prediction > 0.5 else "Fractured" # Generate PDF report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica-Bold", 16) c.drawString(200, 770, "Bone Fracture Detection Report") c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}") # Save X-ray image for report img = Image.open(xray).resize((300, 300)) img_path = f"{name}_xray.png" img.save(img_path) c.drawInlineImage(img_path, 50, 320, width=250, height=250) c.save() # Store file path for sending email report_paths[name] = report_path return report_path # Return file path # Gradio Interface with gr.Blocks() as app: gr.Markdown("## Bone Fracture Detection System") with gr.Row(): name = gr.Textbox(label="Patient Name") age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): weight = gr.Number(label="Weight (kg)") height = gr.Number(label="Height (cm)") with gr.Row(): allergies = gr.Textbox(label="Allergies") cause = gr.Textbox(label="Cause of Injury") with gr.Row(): email = gr.Textbox(label="Patient Email", type="email") # Preloaded X-ray image default_xray_path = "default_xray.png" # Ensure this file exists in your project xray = gr.Image(type="filepath", label="Upload X-ray Image", value=default_xray_path) with gr.Row(): submit_button = gr.Button("Generate Report") send_email_button = gr.Button("Send Report via Email") output_file = gr.File(label="Download Report") # Generate Report Button submit_button.click( generate_report, inputs=[name, age, gender, weight, height, allergies, cause, xray], outputs=[output_file] ) # Send Email Button send_email_button.click( send_email, inputs=[email, name], outputs=[gr.Textbox(label="Status")] ) # Launch app if __name__ == "__main__": app.launch()