import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # Function to process X-rays and generate a PDF report def generate_report(name, age, gender, xray1, xray2): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict on both X-rays prediction1 = predict_fracture(xray1) prediction2 = predict_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" # Injury severity classification severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" treatment = { "Mild": "Rest, pain relievers, follow-up X-ray.", "Moderate": "Plaster cast, possible minor surgery.", "Severe": "Major surgery, metal implants, physiotherapy." }[severity] gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path # Return path for auto-download # Define Gradio Interface interface = gr.Interface( fn=generate_report, inputs=[ gr.Textbox(label="Patient Name"), gr.Number(label="Age"), gr.Radio(["Male", "Female", "Other"], label="Gender"), gr.Image(type="filepath", label="Upload X-ray Image 1"), gr.Image(type="filepath", label="Upload X-ray Image 2"), ], outputs=gr.File(label="Download Report"), title="Bone Fracture Detection & Medical Report", description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates." ) # Launch the Gradio app if __name__ == "__main__": interface.launch()