from flask import Flask, render_template, request, send_file import os import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") app = Flask(__name__, template_folder="templates", static_folder="static") # Function to process X-rays and generate a PDF report def generate_report(name, age, gender, xray1, xray2): image_size = (224, 224) def predict_fracture(xray): img = Image.open(xray).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict on both X-rays prediction1 = predict_fracture(xray1) prediction2 = predict_fracture(xray2) avg_prediction = (prediction1 + prediction2) / 2 diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal" # Injury severity classification severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe" treatment = { "Mild": "Rest, pain relievers, follow-up X-ray.", "Moderate": "Plaster cast, possible minor surgery.", "Severe": "Major surgery, metal implants, physiotherapy." }[severity] gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity] private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity] # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) c.setFont("Helvetica", 12) c.drawString(100, 750, f"Patient Name: {name}") c.drawString(100, 730, f"Age: {age}") c.drawString(100, 710, f"Gender: {gender}") c.drawString(100, 690, f"Diagnosis: {diagnosed_class}") c.drawString(100, 670, f"Injury Severity: {severity}") c.drawString(100, 650, f"Recommended Treatment: {treatment}") c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}") c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}") c.save() return report_path # Return path for auto-download # Flask Route: Serve HTML Page @app.route("/") def home(): return render_template("re.html") # Flask Route: Handle Form Submission @app.route("/submit_report", methods=["POST"]) def submit_report(): name = request.form["first_name"] + " " + request.form["surname"] age = request.form["age"] gender = request.form["gender"] xray1 = request.files["xray_side"] xray2 = request.files["xray_top"] # Generate PDF report pdf_path = generate_report(name, age, gender, xray1, xray2) return send_file(pdf_path, as_attachment=True) # Auto-download report if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=False) # Run Flask on 7860